脑电信号分类分析偏头痛

Erfan Sayyari, Mohsen Farzi, Roohollah Rezaei Estakhrooeieh, F. Samiee, M. Shamsollahi
{"title":"脑电信号分类分析偏头痛","authors":"Erfan Sayyari, Mohsen Farzi, Roohollah Rezaei Estakhrooeieh, F. Samiee, M. Shamsollahi","doi":"10.1109/ISSPA.2012.6310674","DOIUrl":null,"url":null,"abstract":"Migraine is a common type of headache with neurovascular origin. In this paper, a quantitative analysis of spontaneous EEG patterns is used to examine the migraine patients with maximum and minimum pain levels. The analysis is based on alpha band phase synchronization algorithm. The efficiency of extracted features are examined through one-way ANOVA test. we reached the P-value of 0.0001, proving that the EEG patterns are statistically discriminant in maximum and minimum pain levels. We also used a Neural Network based approach in order to classify the EEG patterns, distinguishing between minimum and maximum pain levels. We achieved the total accuracy of 90.9 %.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Migraine analysis through EEG signals with classification approach\",\"authors\":\"Erfan Sayyari, Mohsen Farzi, Roohollah Rezaei Estakhrooeieh, F. Samiee, M. Shamsollahi\",\"doi\":\"10.1109/ISSPA.2012.6310674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Migraine is a common type of headache with neurovascular origin. In this paper, a quantitative analysis of spontaneous EEG patterns is used to examine the migraine patients with maximum and minimum pain levels. The analysis is based on alpha band phase synchronization algorithm. The efficiency of extracted features are examined through one-way ANOVA test. we reached the P-value of 0.0001, proving that the EEG patterns are statistically discriminant in maximum and minimum pain levels. We also used a Neural Network based approach in order to classify the EEG patterns, distinguishing between minimum and maximum pain levels. We achieved the total accuracy of 90.9 %.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

偏头痛是一种常见的由神经血管引起的头痛。本文采用自发性脑电图模式的定量分析方法对偏头痛患者的最大和最小疼痛程度进行了研究。该分析基于α波段相位同步算法。通过单因素方差分析检验提取特征的有效性。我们达到了0.0001的p值,证明脑电图模式在最大和最小疼痛水平上具有统计学区别。我们还使用了基于神经网络的方法来分类脑电图模式,区分最小和最大疼痛水平。我们达到了90.9%的总准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Migraine analysis through EEG signals with classification approach
Migraine is a common type of headache with neurovascular origin. In this paper, a quantitative analysis of spontaneous EEG patterns is used to examine the migraine patients with maximum and minimum pain levels. The analysis is based on alpha band phase synchronization algorithm. The efficiency of extracted features are examined through one-way ANOVA test. we reached the P-value of 0.0001, proving that the EEG patterns are statistically discriminant in maximum and minimum pain levels. We also used a Neural Network based approach in order to classify the EEG patterns, distinguishing between minimum and maximum pain levels. We achieved the total accuracy of 90.9 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信