Peter Milder, F. Franchetti, J. Hoe, Markus Püschel
{"title":"FFT编译器:从数学到高效硬件HLDVT邀请短论文","authors":"Peter Milder, F. Franchetti, J. Hoe, Markus Püschel","doi":"10.1109/HLDVT.2007.4392801","DOIUrl":null,"url":null,"abstract":"This paper presents a high-level compiler that generates hardware implementations of the discrete Fourier transform (DFT) from mathematical specifications. The matrix formula input language captures not only the DFT calculation but also the implementation options at the algorithmic and architectural levels. By selecting the appropriate formula, the resulting hardware implementations (described in a synthesizable Verilog description) can achieve a wide range of tradeoffs between implementation cost and performance. The compiler is also parameterized for a set of technology-specific optimizations, to allow it to target specific implementation platforms. This paper gives a brief overview of the system and presents synthesis results.","PeriodicalId":339324,"journal":{"name":"2007 IEEE International High Level Design Validation and Test Workshop","volume":"46 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FFT Compiler: from math to efficient hardware HLDVT invited short paper\",\"authors\":\"Peter Milder, F. Franchetti, J. Hoe, Markus Püschel\",\"doi\":\"10.1109/HLDVT.2007.4392801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-level compiler that generates hardware implementations of the discrete Fourier transform (DFT) from mathematical specifications. The matrix formula input language captures not only the DFT calculation but also the implementation options at the algorithmic and architectural levels. By selecting the appropriate formula, the resulting hardware implementations (described in a synthesizable Verilog description) can achieve a wide range of tradeoffs between implementation cost and performance. The compiler is also parameterized for a set of technology-specific optimizations, to allow it to target specific implementation platforms. This paper gives a brief overview of the system and presents synthesis results.\",\"PeriodicalId\":339324,\"journal\":{\"name\":\"2007 IEEE International High Level Design Validation and Test Workshop\",\"volume\":\"46 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International High Level Design Validation and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2007.4392801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International High Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2007.4392801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FFT Compiler: from math to efficient hardware HLDVT invited short paper
This paper presents a high-level compiler that generates hardware implementations of the discrete Fourier transform (DFT) from mathematical specifications. The matrix formula input language captures not only the DFT calculation but also the implementation options at the algorithmic and architectural levels. By selecting the appropriate formula, the resulting hardware implementations (described in a synthesizable Verilog description) can achieve a wide range of tradeoffs between implementation cost and performance. The compiler is also parameterized for a set of technology-specific optimizations, to allow it to target specific implementation platforms. This paper gives a brief overview of the system and presents synthesis results.