基于维数压缩和禁忌搜索的数据预测神经网络结构优化

Tomohiro Hayashida, I. Nishizaki, Tsubasa Matsumoto
{"title":"基于维数压缩和禁忌搜索的数据预测神经网络结构优化","authors":"Tomohiro Hayashida, I. Nishizaki, Tsubasa Matsumoto","doi":"10.1109/IWCIA.2013.6624790","DOIUrl":null,"url":null,"abstract":"In the traditional procedures, data classification with a high degree of accuracy by neural networks requires heuristic structural optimization by using expert knowledge. However, the optimization procedure takes an immense amount of time and effort. Additionally, high-dimensional data is difficult to classify for many analysts, thus, it would appears that accuracy of data classification grows higher by proper selection and dimensional compression of input data. This study suggests new procedure for data classification by using neural networks. For dimensional compression of input data, the suggested procedure uses sandglass type neural networks, and tabu search algorithms are applied for input data selection and structural optimization of union between a sandglass type and a feedforward neural networks.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural optimization of neural network for data prediction using dimensional compression and tabu search\",\"authors\":\"Tomohiro Hayashida, I. Nishizaki, Tsubasa Matsumoto\",\"doi\":\"10.1109/IWCIA.2013.6624790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the traditional procedures, data classification with a high degree of accuracy by neural networks requires heuristic structural optimization by using expert knowledge. However, the optimization procedure takes an immense amount of time and effort. Additionally, high-dimensional data is difficult to classify for many analysts, thus, it would appears that accuracy of data classification grows higher by proper selection and dimensional compression of input data. This study suggests new procedure for data classification by using neural networks. For dimensional compression of input data, the suggested procedure uses sandglass type neural networks, and tabu search algorithms are applied for input data selection and structural optimization of union between a sandglass type and a feedforward neural networks.\",\"PeriodicalId\":257474,\"journal\":{\"name\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2013.6624790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在传统的分类过程中,神经网络要实现高精度的数据分类,需要利用专家知识进行启发式结构优化。然而,优化过程需要花费大量的时间和精力。此外,对于许多分析人员来说,高维数据很难分类,因此,通过对输入数据进行适当的选择和维度压缩,似乎可以提高数据分类的准确性。本研究提出了利用神经网络进行数据分类的新方法。对于输入数据的维数压缩,建议的过程使用沙漏型神经网络,并使用禁忌搜索算法进行输入数据的选择和沙漏型神经网络与前馈神经网络结合的结构优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural optimization of neural network for data prediction using dimensional compression and tabu search
In the traditional procedures, data classification with a high degree of accuracy by neural networks requires heuristic structural optimization by using expert knowledge. However, the optimization procedure takes an immense amount of time and effort. Additionally, high-dimensional data is difficult to classify for many analysts, thus, it would appears that accuracy of data classification grows higher by proper selection and dimensional compression of input data. This study suggests new procedure for data classification by using neural networks. For dimensional compression of input data, the suggested procedure uses sandglass type neural networks, and tabu search algorithms are applied for input data selection and structural optimization of union between a sandglass type and a feedforward neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信