P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri
{"title":"神经元的分割和光学编程神经突生长的测量:通过贝叶斯阈值快速自动化","authors":"P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri","doi":"10.1109/NER.2015.7146794","DOIUrl":null,"url":null,"abstract":"The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of neuron and measurement of optically programed neurite growth: Fast automation via Bayesian thresholding\",\"authors\":\"P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri\",\"doi\":\"10.1109/NER.2015.7146794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of neuron and measurement of optically programed neurite growth: Fast automation via Bayesian thresholding
The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.