不确定多输入多输出机器人系统的时变时滞和未知逆激滞的自适应神经网络控制

Longbin Zhang, Ziting Chen, Zhijun Li, C. Su, Zhiye Xiao
{"title":"不确定多输入多输出机器人系统的时变时滞和未知逆激滞的自适应神经网络控制","authors":"Longbin Zhang, Ziting Chen, Zhijun Li, C. Su, Zhiye Xiao","doi":"10.1109/ICINFA.2015.7279585","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive neural network control scheme for uncertain nonlinearly multi-input-multi-output (MIMO) robotic systems with time-varying delay and unknown backlash-like hysteresis. The radial basis function neural network (RBFNN) is used to approximate the unknown nolinear function term of the uncertain MIMO robotic systems and the unknown backlash-like hysteresis nonlinearity. To compensate the time-varying delays and unknown backlash-like hysteresis, a new version of high dimensional integral Lyapunov function is presented to construct a Lyapunov-based adaptive control structure. By combining the high dimensional integral-type Lyapunov function and RBFNN, the global stability of the considered systems is ensured and the tracking errors converge to the origin. Simulation studies on 2-DOF robotic manipulators demonstrate the proposed method is effective.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive neural network control for uncertain MIMO robotic systems with time-varying delay and unknown backlash-like hysteresis\",\"authors\":\"Longbin Zhang, Ziting Chen, Zhijun Li, C. Su, Zhiye Xiao\",\"doi\":\"10.1109/ICINFA.2015.7279585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive neural network control scheme for uncertain nonlinearly multi-input-multi-output (MIMO) robotic systems with time-varying delay and unknown backlash-like hysteresis. The radial basis function neural network (RBFNN) is used to approximate the unknown nolinear function term of the uncertain MIMO robotic systems and the unknown backlash-like hysteresis nonlinearity. To compensate the time-varying delays and unknown backlash-like hysteresis, a new version of high dimensional integral Lyapunov function is presented to construct a Lyapunov-based adaptive control structure. By combining the high dimensional integral-type Lyapunov function and RBFNN, the global stability of the considered systems is ensured and the tracking errors converge to the origin. Simulation studies on 2-DOF robotic manipulators demonstrate the proposed method is effective.\",\"PeriodicalId\":186975,\"journal\":{\"name\":\"2015 IEEE International Conference on Information and Automation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2015.7279585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对不确定非线性多输入多输出(MIMO)机器人系统,提出了一种具有时变时滞和未知类逆激滞后的自适应神经网络控制方案。采用径向基函数神经网络(RBFNN)逼近不确定MIMO机器人系统的未知非线性函数项和未知类间隙滞回非线性。为了补偿系统的时变时滞和未知的类间隙滞后,提出了一种新的高维积分李雅普诺夫函数来构造基于李雅普诺夫的自适应控制结构。通过将高维积分型Lyapunov函数与RBFNN相结合,保证了系统的全局稳定性,并使跟踪误差收敛到原点。对二自由度机械臂的仿真研究表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural network control for uncertain MIMO robotic systems with time-varying delay and unknown backlash-like hysteresis
This paper proposes an adaptive neural network control scheme for uncertain nonlinearly multi-input-multi-output (MIMO) robotic systems with time-varying delay and unknown backlash-like hysteresis. The radial basis function neural network (RBFNN) is used to approximate the unknown nolinear function term of the uncertain MIMO robotic systems and the unknown backlash-like hysteresis nonlinearity. To compensate the time-varying delays and unknown backlash-like hysteresis, a new version of high dimensional integral Lyapunov function is presented to construct a Lyapunov-based adaptive control structure. By combining the high dimensional integral-type Lyapunov function and RBFNN, the global stability of the considered systems is ensured and the tracking errors converge to the origin. Simulation studies on 2-DOF robotic manipulators demonstrate the proposed method is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信