基于函数值的有理插值导数误差分析

Xingang Wang, Yushui Geng, Zhenyu Yang, Shilong Li
{"title":"基于函数值的有理插值导数误差分析","authors":"Xingang Wang, Yushui Geng, Zhenyu Yang, Shilong Li","doi":"10.1109/CMSP.2011.129","DOIUrl":null,"url":null,"abstract":"This paper deals with the approximation properties of the derivatives of rational cubic interpolation based on function values in the field of computer aided geometric design. Error expressions of the derivatives of interpolating functions are derived, convergence is established, and the optimal error coefficient ci is bounded. On the second derivatives, the unified integral form of the error of the second derivatives is obtained in all subintervals except the last subinterval. A simple expression of the jump of the second derivatives at the knots and the conditions of the interpolation function to be C2 in the interpolation interval are given.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error Analysis of the Derivative of the Rational Interpolation Based on Function Values\",\"authors\":\"Xingang Wang, Yushui Geng, Zhenyu Yang, Shilong Li\",\"doi\":\"10.1109/CMSP.2011.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the approximation properties of the derivatives of rational cubic interpolation based on function values in the field of computer aided geometric design. Error expressions of the derivatives of interpolating functions are derived, convergence is established, and the optimal error coefficient ci is bounded. On the second derivatives, the unified integral form of the error of the second derivatives is obtained in all subintervals except the last subinterval. A simple expression of the jump of the second derivatives at the knots and the conditions of the interpolation function to be C2 in the interpolation interval are given.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了计算机辅助几何设计中基于函数值的有理三次插值导数的逼近性质。推导了插值函数导数的误差表达式,建立了收敛性,并给出了最优误差系数ci有界。在二阶导数上,得到了除最后一个子区间外所有子区间内二阶导数误差的统一积分形式。给出了二阶导数在结点处跳变的简单表达式,以及插值函数在插值区间内为C2的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Analysis of the Derivative of the Rational Interpolation Based on Function Values
This paper deals with the approximation properties of the derivatives of rational cubic interpolation based on function values in the field of computer aided geometric design. Error expressions of the derivatives of interpolating functions are derived, convergence is established, and the optimal error coefficient ci is bounded. On the second derivatives, the unified integral form of the error of the second derivatives is obtained in all subintervals except the last subinterval. A simple expression of the jump of the second derivatives at the knots and the conditions of the interpolation function to be C2 in the interpolation interval are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信