精细到粗粒度分区多核系统中能量约束的完工时间优化框架

Shervin Hajiamini, B. Shirazi, Chris Cain, Hongbo Dong
{"title":"精细到粗粒度分区多核系统中能量约束的完工时间优化框架","authors":"Shervin Hajiamini, B. Shirazi, Chris Cain, Hongbo Dong","doi":"10.1109/IGCC.2017.8323582","DOIUrl":null,"url":null,"abstract":"In today's multicore systems, depending on an application's computational demand, cores are either operated individually at different Voltage/Frequency (V/F) levels or grouped into multiple Voltage-Frequency Islands (VFIs) to reduce system energy consumption. This paper formulates a task scheduling and VFI partitioning problem whose optimization goal is to minimize the task set (application) execution time (makespan) for a given energy budget. First, the combinatorial optimization problem is formulated with Integer Linear Programming (ILP) to obtain per-core, per-task dynamic V/F levels in a fine-grain VFI-based system with single-core islands. Next, static task scheduling on coarse-grain VFI-based systems, where an island can contain several cores operated at the same V/F level, is formulated with Mixed Integer Linear Programming (MILP), considering the energy budget and task set's precedence constraints. The experimental results show that under different energy budget constraints, fine-grain, dynamic task allocations provide on average 1.35x speedup over static coarse grain scheduling and partitioning methods.","PeriodicalId":133239,"journal":{"name":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An energy-constrained makespan optimization framework in fine-to coarse-grain partitioned multicore systems\",\"authors\":\"Shervin Hajiamini, B. Shirazi, Chris Cain, Hongbo Dong\",\"doi\":\"10.1109/IGCC.2017.8323582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's multicore systems, depending on an application's computational demand, cores are either operated individually at different Voltage/Frequency (V/F) levels or grouped into multiple Voltage-Frequency Islands (VFIs) to reduce system energy consumption. This paper formulates a task scheduling and VFI partitioning problem whose optimization goal is to minimize the task set (application) execution time (makespan) for a given energy budget. First, the combinatorial optimization problem is formulated with Integer Linear Programming (ILP) to obtain per-core, per-task dynamic V/F levels in a fine-grain VFI-based system with single-core islands. Next, static task scheduling on coarse-grain VFI-based systems, where an island can contain several cores operated at the same V/F level, is formulated with Mixed Integer Linear Programming (MILP), considering the energy budget and task set's precedence constraints. The experimental results show that under different energy budget constraints, fine-grain, dynamic task allocations provide on average 1.35x speedup over static coarse grain scheduling and partitioning methods.\",\"PeriodicalId\":133239,\"journal\":{\"name\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"volume\":\"514 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2017.8323582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2017.8323582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在当今的多核系统中,根据应用程序的计算需求,内核要么在不同的电压/频率(V/F)水平单独运行,要么组合成多个电压频率岛(vfi),以降低系统能耗。本文提出了一个任务调度和VFI分区问题,其优化目标是在给定能量预算下最小化任务集(应用程序)执行时间(makespan)。首先,利用整数线性规划(ILP)构造组合优化问题,以获得具有单核孤岛的细粒度vfi系统的每核、每任务动态V/F水平。其次,考虑能量预算和任务集的优先级约束,利用混合整数线性规划(MILP)制定了基于粗粒度vfi系统的静态任务调度,其中孤岛可以包含在相同V/F水平上运行的多个核心。实验结果表明,在不同的能量预算约束下,细粒度动态任务分配比静态粗粒度调度和分配方法平均提高1.35倍的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy-constrained makespan optimization framework in fine-to coarse-grain partitioned multicore systems
In today's multicore systems, depending on an application's computational demand, cores are either operated individually at different Voltage/Frequency (V/F) levels or grouped into multiple Voltage-Frequency Islands (VFIs) to reduce system energy consumption. This paper formulates a task scheduling and VFI partitioning problem whose optimization goal is to minimize the task set (application) execution time (makespan) for a given energy budget. First, the combinatorial optimization problem is formulated with Integer Linear Programming (ILP) to obtain per-core, per-task dynamic V/F levels in a fine-grain VFI-based system with single-core islands. Next, static task scheduling on coarse-grain VFI-based systems, where an island can contain several cores operated at the same V/F level, is formulated with Mixed Integer Linear Programming (MILP), considering the energy budget and task set's precedence constraints. The experimental results show that under different energy budget constraints, fine-grain, dynamic task allocations provide on average 1.35x speedup over static coarse grain scheduling and partitioning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信