智能机器人感兴趣区域的语义评价

M. Rokunuzzaman, K. Sekiyama, T. Fukuda
{"title":"智能机器人感兴趣区域的语义评价","authors":"M. Rokunuzzaman, K. Sekiyama, T. Fukuda","doi":"10.1109/IROS.2010.5652064","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of semantic evaluation of Region of Interest (ROI) for intelligent robots. The intelligent robot must have the capability of understanding situations. The first step of understanding of the situation is to find where to focus on and how to behave. Focusing on some particular area or region needs selection of the objects of interaction relevant to the context. Moreover, the focused area needs to be semantically evaluated to quantify the semantic relations. In this paper, we first detect interacting objects based on dynamic interaction. Then we recognize probable objects using Dynamic Bayesian Networks. Using the probable objects and a mutual supplementation model, we determine the contextual object. We form ROIs based on possible combinations of objects and the contextual object. Finally, we semantically evaluate each ROI. Various experimental results are provided to illustrate our method.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semantic evaluation of region of interest for intelligent robot\",\"authors\":\"M. Rokunuzzaman, K. Sekiyama, T. Fukuda\",\"doi\":\"10.1109/IROS.2010.5652064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of semantic evaluation of Region of Interest (ROI) for intelligent robots. The intelligent robot must have the capability of understanding situations. The first step of understanding of the situation is to find where to focus on and how to behave. Focusing on some particular area or region needs selection of the objects of interaction relevant to the context. Moreover, the focused area needs to be semantically evaluated to quantify the semantic relations. In this paper, we first detect interacting objects based on dynamic interaction. Then we recognize probable objects using Dynamic Bayesian Networks. Using the probable objects and a mutual supplementation model, we determine the contextual object. We form ROIs based on possible combinations of objects and the contextual object. Finally, we semantically evaluate each ROI. Various experimental results are provided to illustrate our method.\",\"PeriodicalId\":420658,\"journal\":{\"name\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2010.5652064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5652064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了智能机器人感兴趣区域(ROI)语义评价的概念。智能机器人必须具备理解情境的能力。了解情况的第一步是找到关注的焦点和如何表现。关注某个特定的区域或区域需要选择与上下文相关的交互对象。此外,需要对关注区域进行语义评估,以量化语义关系。在本文中,我们首先基于动态交互检测交互对象。然后利用动态贝叶斯网络识别可能的目标。利用可能对象和相互补充模型确定上下文对象。我们根据对象和上下文对象的可能组合形成roi。最后,我们从语义上评估每个ROI。给出了各种实验结果来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic evaluation of region of interest for intelligent robot
This paper introduces the concept of semantic evaluation of Region of Interest (ROI) for intelligent robots. The intelligent robot must have the capability of understanding situations. The first step of understanding of the situation is to find where to focus on and how to behave. Focusing on some particular area or region needs selection of the objects of interaction relevant to the context. Moreover, the focused area needs to be semantically evaluated to quantify the semantic relations. In this paper, we first detect interacting objects based on dynamic interaction. Then we recognize probable objects using Dynamic Bayesian Networks. Using the probable objects and a mutual supplementation model, we determine the contextual object. We form ROIs based on possible combinations of objects and the contextual object. Finally, we semantically evaluate each ROI. Various experimental results are provided to illustrate our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信