金属氧化物气体传感器封装结构设计

Xiyou Wang, Maofen Zhang, Daoguo Yang
{"title":"金属氧化物气体传感器封装结构设计","authors":"Xiyou Wang, Maofen Zhang, Daoguo Yang","doi":"10.1109/ICEPT.2017.8046691","DOIUrl":null,"url":null,"abstract":"For gas-sensing mechanism of metal oxide, metal oxide gas sensor chip needs to work in a hot environment from 150°C to 400°C and must open to detected gases. These different characteristics, compared with integrated circuit (IC), lead significant challenges for metal oxide gas sensor packaging design. In this paper, to get best packaging design, we discuss the influence of the sensor chip conductivity(A), shell conductivity(B), metal wire conductivity(C), glass insulation conductivity(D), sensor chip size(E), source power(F) and shell thickness(G) on the gas sensor package thermal performance by modeling and finite element analysis(FEA) method, and then verify the FEA method though an experiment. The results show that the influence to the mean temperature of the shell top center decreases in the order: F>B>C>E>D>A>G according to the R values, while the influence to the sensor chip temperature decreases in the following order: C>D>B>E>F>A>G.","PeriodicalId":386197,"journal":{"name":"2017 18th International Conference on Electronic Packaging Technology (ICEPT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Packaging structure design for metal oxide gas sensors\",\"authors\":\"Xiyou Wang, Maofen Zhang, Daoguo Yang\",\"doi\":\"10.1109/ICEPT.2017.8046691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For gas-sensing mechanism of metal oxide, metal oxide gas sensor chip needs to work in a hot environment from 150°C to 400°C and must open to detected gases. These different characteristics, compared with integrated circuit (IC), lead significant challenges for metal oxide gas sensor packaging design. In this paper, to get best packaging design, we discuss the influence of the sensor chip conductivity(A), shell conductivity(B), metal wire conductivity(C), glass insulation conductivity(D), sensor chip size(E), source power(F) and shell thickness(G) on the gas sensor package thermal performance by modeling and finite element analysis(FEA) method, and then verify the FEA method though an experiment. The results show that the influence to the mean temperature of the shell top center decreases in the order: F>B>C>E>D>A>G according to the R values, while the influence to the sensor chip temperature decreases in the following order: C>D>B>E>F>A>G.\",\"PeriodicalId\":386197,\"journal\":{\"name\":\"2017 18th International Conference on Electronic Packaging Technology (ICEPT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Electronic Packaging Technology (ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2017.8046691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Electronic Packaging Technology (ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2017.8046691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于金属氧化物的气敏机理,金属氧化物气体传感器芯片需要在150℃~ 400℃的高温环境下工作,并且必须对检测到的气体打开。与集成电路(IC)相比,这些不同的特性给金属氧化物气体传感器封装设计带来了重大挑战。为了获得最佳封装设计,本文通过建模和有限元分析(FEA)方法,讨论了传感器芯片电导率(A)、外壳电导率(B)、金属丝电导率(C)、玻璃绝缘电导率(D)、传感器芯片尺寸(E)、源功率(F)和外壳厚度(G)对气体传感器封装热性能的影响,并通过实验验证了FEA方法。结果表明:对壳顶中心平均温度的影响按R值大小依次为F>B>C>E>D>A>G,对传感器芯片温度的影响按R值大小依次为C>D>B>E>F>A>G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packaging structure design for metal oxide gas sensors
For gas-sensing mechanism of metal oxide, metal oxide gas sensor chip needs to work in a hot environment from 150°C to 400°C and must open to detected gases. These different characteristics, compared with integrated circuit (IC), lead significant challenges for metal oxide gas sensor packaging design. In this paper, to get best packaging design, we discuss the influence of the sensor chip conductivity(A), shell conductivity(B), metal wire conductivity(C), glass insulation conductivity(D), sensor chip size(E), source power(F) and shell thickness(G) on the gas sensor package thermal performance by modeling and finite element analysis(FEA) method, and then verify the FEA method though an experiment. The results show that the influence to the mean temperature of the shell top center decreases in the order: F>B>C>E>D>A>G according to the R values, while the influence to the sensor chip temperature decreases in the following order: C>D>B>E>F>A>G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信