{"title":"GraphTM","authors":"Pavan Poudel, Gokarna Sharma","doi":"10.1145/3369740.3369774","DOIUrl":null,"url":null,"abstract":"In this paper, we present GraphTM, an efficient and scalable framework for processing transactions in a distributed environment. The distributed environment is modeled as a graph where each node of the graph is a processing node that issues transactions. The objects that transactions use to execute are also on the graph nodes (the initial placement may be arbitrary). The transactions execute on the nodes which issue them after collecting all the objects that they need following the data-flow model of computation. This collection is done by issuing the requests for the objects as soon as transaction starts and wait until all required objects for the transaction come to the requesting node. The challenge is on how to schedule the transactions so that two crucial performance metrics, namely (i) total execution time to commit all the transactions, and (ii) total communication cost involved in moving the objects to the requesting nodes, are minimized. We implemented GraphTM in Java and assessed its performance through 3 micro-benchmarks and 5 complex benchmarks from STAMP benchmark suite on 5 different network topologies, namely, clique, line, grid, cluster, and star, that make an underlying communication network for a representative set of distributed systems commonly used in practice. The results show the efficiency and scalability of our approach.","PeriodicalId":240048,"journal":{"name":"Proceedings of the 21st International Conference on Distributed Computing and Networking","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GraphTM\",\"authors\":\"Pavan Poudel, Gokarna Sharma\",\"doi\":\"10.1145/3369740.3369774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present GraphTM, an efficient and scalable framework for processing transactions in a distributed environment. The distributed environment is modeled as a graph where each node of the graph is a processing node that issues transactions. The objects that transactions use to execute are also on the graph nodes (the initial placement may be arbitrary). The transactions execute on the nodes which issue them after collecting all the objects that they need following the data-flow model of computation. This collection is done by issuing the requests for the objects as soon as transaction starts and wait until all required objects for the transaction come to the requesting node. The challenge is on how to schedule the transactions so that two crucial performance metrics, namely (i) total execution time to commit all the transactions, and (ii) total communication cost involved in moving the objects to the requesting nodes, are minimized. We implemented GraphTM in Java and assessed its performance through 3 micro-benchmarks and 5 complex benchmarks from STAMP benchmark suite on 5 different network topologies, namely, clique, line, grid, cluster, and star, that make an underlying communication network for a representative set of distributed systems commonly used in practice. The results show the efficiency and scalability of our approach.\",\"PeriodicalId\":240048,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Distributed Computing and Networking\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Distributed Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3369740.3369774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369740.3369774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present GraphTM, an efficient and scalable framework for processing transactions in a distributed environment. The distributed environment is modeled as a graph where each node of the graph is a processing node that issues transactions. The objects that transactions use to execute are also on the graph nodes (the initial placement may be arbitrary). The transactions execute on the nodes which issue them after collecting all the objects that they need following the data-flow model of computation. This collection is done by issuing the requests for the objects as soon as transaction starts and wait until all required objects for the transaction come to the requesting node. The challenge is on how to schedule the transactions so that two crucial performance metrics, namely (i) total execution time to commit all the transactions, and (ii) total communication cost involved in moving the objects to the requesting nodes, are minimized. We implemented GraphTM in Java and assessed its performance through 3 micro-benchmarks and 5 complex benchmarks from STAMP benchmark suite on 5 different network topologies, namely, clique, line, grid, cluster, and star, that make an underlying communication network for a representative set of distributed systems commonly used in practice. The results show the efficiency and scalability of our approach.