基于神经网络的轴承故障检测

Hajar Mayssa, Khalil Mohamad
{"title":"基于神经网络的轴承故障检测","authors":"Hajar Mayssa, Khalil Mohamad","doi":"10.1109/ICTEA.2012.6462903","DOIUrl":null,"url":null,"abstract":"In this paper we present an application for the Artificial Neural Networks in industrial monitoring domain. Because it is frequently defected, we chose the bearing element to diagnose. Applying the pattern recognition principle, we used the bearing vibration signals which represent this element in its different states (normal, defected and severely defected) to extract their power spectral density parameters and classify them using the Feed Forward Neural Networks. The performance of the used networks reached 100% in some cases.","PeriodicalId":245530,"journal":{"name":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bearing fault detection using neural networks\",\"authors\":\"Hajar Mayssa, Khalil Mohamad\",\"doi\":\"10.1109/ICTEA.2012.6462903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an application for the Artificial Neural Networks in industrial monitoring domain. Because it is frequently defected, we chose the bearing element to diagnose. Applying the pattern recognition principle, we used the bearing vibration signals which represent this element in its different states (normal, defected and severely defected) to extract their power spectral density parameters and classify them using the Feed Forward Neural Networks. The performance of the used networks reached 100% in some cases.\",\"PeriodicalId\":245530,\"journal\":{\"name\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEA.2012.6462903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEA.2012.6462903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了人工神经网络在工业监控领域的应用。由于它经常发生故障,我们选择轴承元件进行诊断。应用模式识别原理,利用不同状态(正常、缺陷和严重缺陷)的轴承振动信号提取其功率谱密度参数,并利用前馈神经网络对其进行分类。在某些情况下,使用的网络的性能达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bearing fault detection using neural networks
In this paper we present an application for the Artificial Neural Networks in industrial monitoring domain. Because it is frequently defected, we chose the bearing element to diagnose. Applying the pattern recognition principle, we used the bearing vibration signals which represent this element in its different states (normal, defected and severely defected) to extract their power spectral density parameters and classify them using the Feed Forward Neural Networks. The performance of the used networks reached 100% in some cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信