使用赤池信息准则(AIC)、贝叶斯信息准则(BIC)和样本大小调整BIC的模型-数据拟合

Jimo A. Kasali, A. A. Adeyemi
{"title":"使用赤池信息准则(AIC)、贝叶斯信息准则(BIC)和样本大小调整BIC的模型-数据拟合","authors":"Jimo A. Kasali, A. A. Adeyemi","doi":"10.21580/square.2022.4.1.11297","DOIUrl":null,"url":null,"abstract":"The study determined if the 1PL, 2PL, 3PL and 4PL item response theory models best fit the data from the 2016 NECO Mathematics objective tests. Ex-post facto design was adopted for the study. The population for the study comprised 1,022,474 candidates who enrolled and sat for June/July SSCE 2016 NECO Mathematics Examination. The sample comprised 276,338 candidates who sat for the examination in three purposively Geo political zones in Nigeria (i.e., S/West, S/East and N/West). The research instruments used for the study were Optical Marks Record Sheets for the National Examination Council (NECO) June/July 2016 SSCE Mathematics objectives items. The responses of the tests were scored dichotomously. Data collected were analyzed using 2loglikelihood chi-square. The results of the likelihood ratio test revealed that 2PL fitted the data better than 1PL was statistically significant (χ2 (59) = 820636.1, p 0.05); the 2PL model fitted the data better than the 1PL model; 3PL model fitted the data better than the 2PL model and the result showed that the 4PL model fitted the data better than the 3PL model and the Likelihood ratio test that 4PL model fitted the data better than 3PL model was statistically significant, (χ2(60)=216159.2, p0.05). The study concluded that four-parameter logistic model fitted the 2016 NECO Mathematics test items.Keywords: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), one parameter model, two parameter model, three parameter model, four parameter model.","PeriodicalId":406681,"journal":{"name":"Square : Journal of Mathematics and Mathematics Education","volume":"335 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Data Fit using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and The Sample-Size-Adjusted BIC\",\"authors\":\"Jimo A. Kasali, A. A. Adeyemi\",\"doi\":\"10.21580/square.2022.4.1.11297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study determined if the 1PL, 2PL, 3PL and 4PL item response theory models best fit the data from the 2016 NECO Mathematics objective tests. Ex-post facto design was adopted for the study. The population for the study comprised 1,022,474 candidates who enrolled and sat for June/July SSCE 2016 NECO Mathematics Examination. The sample comprised 276,338 candidates who sat for the examination in three purposively Geo political zones in Nigeria (i.e., S/West, S/East and N/West). The research instruments used for the study were Optical Marks Record Sheets for the National Examination Council (NECO) June/July 2016 SSCE Mathematics objectives items. The responses of the tests were scored dichotomously. Data collected were analyzed using 2loglikelihood chi-square. The results of the likelihood ratio test revealed that 2PL fitted the data better than 1PL was statistically significant (χ2 (59) = 820636.1, p 0.05); the 2PL model fitted the data better than the 1PL model; 3PL model fitted the data better than the 2PL model and the result showed that the 4PL model fitted the data better than the 3PL model and the Likelihood ratio test that 4PL model fitted the data better than 3PL model was statistically significant, (χ2(60)=216159.2, p0.05). The study concluded that four-parameter logistic model fitted the 2016 NECO Mathematics test items.Keywords: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), one parameter model, two parameter model, three parameter model, four parameter model.\",\"PeriodicalId\":406681,\"journal\":{\"name\":\"Square : Journal of Mathematics and Mathematics Education\",\"volume\":\"335 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Square : Journal of Mathematics and Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21580/square.2022.4.1.11297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Square : Journal of Mathematics and Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/square.2022.4.1.11297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究确定了第一、第二、第三和第四物流项目反应理论模型是否最适合2016年NECO数学客观测试的数据。本研究采用事后设计。该研究的人群包括1,022,474名报名参加2016年6月/ 7月SSCE NECO数学考试的考生。样本包括276,338名候选人,他们在尼日利亚三个有目的的地理政治区域(即南/西、南/东和北/西)参加考试。本研究使用的研究工具是国家考试委员会(NECO) 2016年6月/ 7月SSCE数学目标项目的光学标记记录表。测试的回答是两分制的。收集的数据使用2对数似然卡方进行分析。似然比检验结果显示,2PL对数据的拟合优于1PL,差异有统计学意义(χ2 (59) = 820636.1, p 0.05);2PL模型比1PL模型更能拟合数据;3PL模型拟合数据优于2PL模型,结果显示4PL模型拟合数据优于3PL模型,经似然比检验,4PL模型拟合数据优于3PL模型,差异有统计学意义(χ2(60)=216159.2, p0.05)。研究表明,四参数logistic模型拟合2016年NECO数学测试项目。关键词:赤池信息准则(AIC)、贝叶斯信息准则(BIC)、一参数模型、二参数模型、三参数模型、四参数模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Data Fit using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and The Sample-Size-Adjusted BIC
The study determined if the 1PL, 2PL, 3PL and 4PL item response theory models best fit the data from the 2016 NECO Mathematics objective tests. Ex-post facto design was adopted for the study. The population for the study comprised 1,022,474 candidates who enrolled and sat for June/July SSCE 2016 NECO Mathematics Examination. The sample comprised 276,338 candidates who sat for the examination in three purposively Geo political zones in Nigeria (i.e., S/West, S/East and N/West). The research instruments used for the study were Optical Marks Record Sheets for the National Examination Council (NECO) June/July 2016 SSCE Mathematics objectives items. The responses of the tests were scored dichotomously. Data collected were analyzed using 2loglikelihood chi-square. The results of the likelihood ratio test revealed that 2PL fitted the data better than 1PL was statistically significant (χ2 (59) = 820636.1, p 0.05); the 2PL model fitted the data better than the 1PL model; 3PL model fitted the data better than the 2PL model and the result showed that the 4PL model fitted the data better than the 3PL model and the Likelihood ratio test that 4PL model fitted the data better than 3PL model was statistically significant, (χ2(60)=216159.2, p0.05). The study concluded that four-parameter logistic model fitted the 2016 NECO Mathematics test items.Keywords: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), one parameter model, two parameter model, three parameter model, four parameter model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信