可达性布局方案的优化

Wen-Hao Liu, Cheng-Kok Koh, Yih-Lang Li
{"title":"可达性布局方案的优化","authors":"Wen-Hao Liu, Cheng-Kok Koh, Yih-Lang Li","doi":"10.1145/2463209.2488923","DOIUrl":null,"url":null,"abstract":"Routability has become a critical issue in VLSI design flow. To avoid producing an unroutable design, many placers [47] invoke global routers to get a congestion map and then move cells to reduce congestion based on this map. However, as cells move, the accuracy of the congestion map degrades, thereby affecting the effectiveness of the placer in minimizing congestions. Moreover, most global routers [8-13] ignore local congestion. If placers are guided by these routers, it may produce hard-to-route placement solutions in terms of detailed routing. This work develops a routability optimizer, called Ropt, to reduce both global and local routing congestion levels of a given placement. Based on a local-routability-aware routing model, Ropt builds a global routing instance to obtain global and local congestion information for guiding global re-placement. In addition, this work presents a new legalization scheme to preserve the global routing instance after legalization. Finally, local detailed placement further minimizes the local congestion and wirelength. For the evaluation of Ropt, we use an academic global router and a commercial router to obtain both global and detailed routing results, respectively. Experimental results reveal that Ropt can improve the routing quality (in terms of congestion, wirelength, and violation) and routing runtime of a given placement solution.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Optimization of placement solutions for routability\",\"authors\":\"Wen-Hao Liu, Cheng-Kok Koh, Yih-Lang Li\",\"doi\":\"10.1145/2463209.2488923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Routability has become a critical issue in VLSI design flow. To avoid producing an unroutable design, many placers [47] invoke global routers to get a congestion map and then move cells to reduce congestion based on this map. However, as cells move, the accuracy of the congestion map degrades, thereby affecting the effectiveness of the placer in minimizing congestions. Moreover, most global routers [8-13] ignore local congestion. If placers are guided by these routers, it may produce hard-to-route placement solutions in terms of detailed routing. This work develops a routability optimizer, called Ropt, to reduce both global and local routing congestion levels of a given placement. Based on a local-routability-aware routing model, Ropt builds a global routing instance to obtain global and local congestion information for guiding global re-placement. In addition, this work presents a new legalization scheme to preserve the global routing instance after legalization. Finally, local detailed placement further minimizes the local congestion and wirelength. For the evaluation of Ropt, we use an academic global router and a commercial router to obtain both global and detailed routing results, respectively. Experimental results reveal that Ropt can improve the routing quality (in terms of congestion, wirelength, and violation) and routing runtime of a given placement solution.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

可达性已成为VLSI设计流程中的关键问题。为了避免产生不可路由的设计,许多placers[47]调用全局路由器来获取拥塞图,然后根据该图移动单元以减少拥塞。然而,随着单元格的移动,拥塞图的准确性降低,从而影响了砂纸在最小化拥塞方面的有效性。而且,大多数全局路由器[8-13]忽略本地拥塞。如果放置者被这些路由器引导,就详细路由而言,可能会产生难以路由的放置解决方案。这项工作开发了一个可达性优化器,称为Ropt,以减少给定位置的全局和本地路由拥塞水平。基于感知本地可达性的路由模型,建立全局路由实例,获取全局和局部拥塞信息,指导全局替换。此外,本文还提出了一种新的合法化方案,可以在合法化后保留全局路由实例。最后,局部详细布局进一步减少了局部拥塞和无线长度。对于Ropt的评估,我们使用了一个学术全局路由器和一个商用路由器,分别获得了全局和详细的路由结果。实验结果表明,Ropt可以提高给定放置方案的路由质量(在拥塞、无线长度和违规方面)和路由运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of placement solutions for routability
Routability has become a critical issue in VLSI design flow. To avoid producing an unroutable design, many placers [47] invoke global routers to get a congestion map and then move cells to reduce congestion based on this map. However, as cells move, the accuracy of the congestion map degrades, thereby affecting the effectiveness of the placer in minimizing congestions. Moreover, most global routers [8-13] ignore local congestion. If placers are guided by these routers, it may produce hard-to-route placement solutions in terms of detailed routing. This work develops a routability optimizer, called Ropt, to reduce both global and local routing congestion levels of a given placement. Based on a local-routability-aware routing model, Ropt builds a global routing instance to obtain global and local congestion information for guiding global re-placement. In addition, this work presents a new legalization scheme to preserve the global routing instance after legalization. Finally, local detailed placement further minimizes the local congestion and wirelength. For the evaluation of Ropt, we use an academic global router and a commercial router to obtain both global and detailed routing results, respectively. Experimental results reveal that Ropt can improve the routing quality (in terms of congestion, wirelength, and violation) and routing runtime of a given placement solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信