通过应变测量验证外部回接连接器的弯曲能力

Adam J. Christopherson, Young-Hoon Han
{"title":"通过应变测量验证外部回接连接器的弯曲能力","authors":"Adam J. Christopherson, Young-Hoon Han","doi":"10.1115/pvp2019-93925","DOIUrl":null,"url":null,"abstract":"\n Strain gauges provide a convenient and affordable method to accurately measure the strain field for complex systems. Not only do they provide crucial information for predicting the fatigue life of components, but they can also determine the principle stresses which can be used to compare design factors with accepted industry standards. The use of electrical resistance strain gauges for load verification has become an ever-increasing practice in the design of subsea connectors as evidenced by the recent application in the industry guidance API 17TR7 [1]. The design is aided by the development of a Finite Element Analysis (FEA) which is used to predict the load capacities for normal, extreme, and survival conditions. The present work describes the experimental validation of a 18-3/4in 10,000 psi subsea collet connector model by applying linear pattern CEA-06-062UW-350 strain gauges at discrete points along the circumferentially spaced collet segments. The collet segments are the selected components for strain gauge placement because not only are they the primary connecting element between the subsea wellhead and the connector body, but they also only support axial loads. The axial strain of the collet segments in tension were compared at two combined loading cases: maximum bending capacity with and without internal working pressure and found to be in good correlation with the elastic-plastic FEA. The experimentally validated FEA is a crucial tool in determining the connector’s application to project or customer specific load and fatigue requirements and eliminates the need for unnecessary experimentation.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation for External Tieback Connector Bending Capacity by Strain Measurement\",\"authors\":\"Adam J. Christopherson, Young-Hoon Han\",\"doi\":\"10.1115/pvp2019-93925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Strain gauges provide a convenient and affordable method to accurately measure the strain field for complex systems. Not only do they provide crucial information for predicting the fatigue life of components, but they can also determine the principle stresses which can be used to compare design factors with accepted industry standards. The use of electrical resistance strain gauges for load verification has become an ever-increasing practice in the design of subsea connectors as evidenced by the recent application in the industry guidance API 17TR7 [1]. The design is aided by the development of a Finite Element Analysis (FEA) which is used to predict the load capacities for normal, extreme, and survival conditions. The present work describes the experimental validation of a 18-3/4in 10,000 psi subsea collet connector model by applying linear pattern CEA-06-062UW-350 strain gauges at discrete points along the circumferentially spaced collet segments. The collet segments are the selected components for strain gauge placement because not only are they the primary connecting element between the subsea wellhead and the connector body, but they also only support axial loads. The axial strain of the collet segments in tension were compared at two combined loading cases: maximum bending capacity with and without internal working pressure and found to be in good correlation with the elastic-plastic FEA. The experimentally validated FEA is a crucial tool in determining the connector’s application to project or customer specific load and fatigue requirements and eliminates the need for unnecessary experimentation.\",\"PeriodicalId\":174920,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应变计提供了一种方便、经济的方法来精确测量复杂系统的应变场。它们不仅为预测部件的疲劳寿命提供了关键信息,而且还可以确定主应力,用于将设计因素与公认的工业标准进行比较。最近行业指南API 17TR7[1]中的应用证明,使用电阻应变片进行负载验证已成为海底连接器设计中越来越多的实践。该设计通过有限元分析(FEA)的发展来辅助,该分析用于预测正常,极端和生存条件下的负载能力。目前的工作描述了一个18-3/4in 10,000 psi的海底夹头连接器模型的实验验证,该模型采用线性模式CEA-06-062UW-350应变片在沿周间隔夹头段的离散点上进行测试。夹头片是安装应变片的选择部件,因为它们不仅是海底井口和接头体之间的主要连接元件,而且还只能承受轴向载荷。对比了夹头在有内压和无内压两种组合加载情况下的最大弯曲能力轴向应变,发现其与弹塑性有限元分析具有较好的相关性。实验验证的有限元分析是确定连接器应用于项目或客户特定负载和疲劳要求的关键工具,并消除了不必要的实验需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation for External Tieback Connector Bending Capacity by Strain Measurement
Strain gauges provide a convenient and affordable method to accurately measure the strain field for complex systems. Not only do they provide crucial information for predicting the fatigue life of components, but they can also determine the principle stresses which can be used to compare design factors with accepted industry standards. The use of electrical resistance strain gauges for load verification has become an ever-increasing practice in the design of subsea connectors as evidenced by the recent application in the industry guidance API 17TR7 [1]. The design is aided by the development of a Finite Element Analysis (FEA) which is used to predict the load capacities for normal, extreme, and survival conditions. The present work describes the experimental validation of a 18-3/4in 10,000 psi subsea collet connector model by applying linear pattern CEA-06-062UW-350 strain gauges at discrete points along the circumferentially spaced collet segments. The collet segments are the selected components for strain gauge placement because not only are they the primary connecting element between the subsea wellhead and the connector body, but they also only support axial loads. The axial strain of the collet segments in tension were compared at two combined loading cases: maximum bending capacity with and without internal working pressure and found to be in good correlation with the elastic-plastic FEA. The experimentally validated FEA is a crucial tool in determining the connector’s application to project or customer specific load and fatigue requirements and eliminates the need for unnecessary experimentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信