Yu-Fei Zhang, Xiang-Yu Gao, Jia-Yi Zhu, Wei-Long Zheng, Bao-Liang Lu
{"title":"基于前额EOG的驾驶疲劳检测新方法","authors":"Yu-Fei Zhang, Xiang-Yu Gao, Jia-Yi Zhu, Wei-Long Zheng, Bao-Liang Lu","doi":"10.1109/NER.2015.7146721","DOIUrl":null,"url":null,"abstract":"Various studies have shown that the traditional electrooculograms (EOGs) are effective for driving fatigue detection. However, the electrode placement of the traditional EOG recording method is around eyes, which may disturb the subjects' activities, and is not convenient for practical applications. To deal with this problem, we propose a novel electrode placement on forehead and present an effective method to extract horizon electrooculogram (HEO) and vertical electrooculogram (VEO) from forehead EOG. The correlation coefficients between the extracted HEO and VEO and the corresponding traditional HEO and VEO are 0.86 and 0.78, respectively. To alleviate the inconvenience of manually labelling fatigue states, we use the videos recorded by eye tracking glasses to calculate the percentage of eye closure over time, which is a conventional indicator of driving fatigue. We use support vector machine (SVM) for regression analysis and get a rather high prediction correlation coefficient of 0.88 on average.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A novel approach to driving fatigue detection using forehead EOG\",\"authors\":\"Yu-Fei Zhang, Xiang-Yu Gao, Jia-Yi Zhu, Wei-Long Zheng, Bao-Liang Lu\",\"doi\":\"10.1109/NER.2015.7146721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various studies have shown that the traditional electrooculograms (EOGs) are effective for driving fatigue detection. However, the electrode placement of the traditional EOG recording method is around eyes, which may disturb the subjects' activities, and is not convenient for practical applications. To deal with this problem, we propose a novel electrode placement on forehead and present an effective method to extract horizon electrooculogram (HEO) and vertical electrooculogram (VEO) from forehead EOG. The correlation coefficients between the extracted HEO and VEO and the corresponding traditional HEO and VEO are 0.86 and 0.78, respectively. To alleviate the inconvenience of manually labelling fatigue states, we use the videos recorded by eye tracking glasses to calculate the percentage of eye closure over time, which is a conventional indicator of driving fatigue. We use support vector machine (SVM) for regression analysis and get a rather high prediction correlation coefficient of 0.88 on average.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel approach to driving fatigue detection using forehead EOG
Various studies have shown that the traditional electrooculograms (EOGs) are effective for driving fatigue detection. However, the electrode placement of the traditional EOG recording method is around eyes, which may disturb the subjects' activities, and is not convenient for practical applications. To deal with this problem, we propose a novel electrode placement on forehead and present an effective method to extract horizon electrooculogram (HEO) and vertical electrooculogram (VEO) from forehead EOG. The correlation coefficients between the extracted HEO and VEO and the corresponding traditional HEO and VEO are 0.86 and 0.78, respectively. To alleviate the inconvenience of manually labelling fatigue states, we use the videos recorded by eye tracking glasses to calculate the percentage of eye closure over time, which is a conventional indicator of driving fatigue. We use support vector machine (SVM) for regression analysis and get a rather high prediction correlation coefficient of 0.88 on average.