近实时低频负荷分解

Selim Sahrane, M. Haddadi
{"title":"近实时低频负荷分解","authors":"Selim Sahrane, M. Haddadi","doi":"10.53907/enpesj.v1i2.15","DOIUrl":null,"url":null,"abstract":"Device-level power consumption information can lead to considerable energy savings. Smart meters are being adopted in several countries, but they are only capable of measuring the total power consumption. NonIntrusive Load Monitoring (NILM) aims to infer the power consumption of individual electrical loads by analyzing the aggregate power signal taken from a single-point measurement. Most existing NILM solutions are offline methods that do not allow the end-user to get real-time feedback on his energy consumption. In this paper, we present a near real-time NILM solution based on multi-label classification and multi-output regression. We use the multi-label classifier to predict the state of each load and use the multi-output regressor to estimate the disaggregated active power consumptions. We test our method using a publically available dataset of real power measurements. Performance results show that the proposed near real-time method can accurately estimate the energy consumption of the targeted loads with an average relative energy error of 1.55 %.","PeriodicalId":200690,"journal":{"name":"ENP Engineering Science Journal","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near Real-Time Low Frequency Load Disaggregation\",\"authors\":\"Selim Sahrane, M. Haddadi\",\"doi\":\"10.53907/enpesj.v1i2.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Device-level power consumption information can lead to considerable energy savings. Smart meters are being adopted in several countries, but they are only capable of measuring the total power consumption. NonIntrusive Load Monitoring (NILM) aims to infer the power consumption of individual electrical loads by analyzing the aggregate power signal taken from a single-point measurement. Most existing NILM solutions are offline methods that do not allow the end-user to get real-time feedback on his energy consumption. In this paper, we present a near real-time NILM solution based on multi-label classification and multi-output regression. We use the multi-label classifier to predict the state of each load and use the multi-output regressor to estimate the disaggregated active power consumptions. We test our method using a publically available dataset of real power measurements. Performance results show that the proposed near real-time method can accurately estimate the energy consumption of the targeted loads with an average relative energy error of 1.55 %.\",\"PeriodicalId\":200690,\"journal\":{\"name\":\"ENP Engineering Science Journal\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENP Engineering Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53907/enpesj.v1i2.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENP Engineering Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53907/enpesj.v1i2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设备级的功耗信息可以节省大量的能源。智能电表在一些国家被采用,但它们只能测量总耗电量。非侵入式负荷监测(NILM)旨在通过分析从单点测量中获取的总功率信号来推断单个电力负荷的功耗。大多数现有的NILM解决方案都是离线方法,不允许最终用户获得有关其能耗的实时反馈。本文提出了一种基于多标签分类和多输出回归的近实时NILM解决方案。我们使用多标签分类器来预测每个负载的状态,并使用多输出回归器来估计分解的有功功耗。我们使用公开的真实功率测量数据集来测试我们的方法。性能结果表明,所提出的近实时方法能够准确估计目标负荷的能耗,平均相对能量误差为1.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near Real-Time Low Frequency Load Disaggregation
Device-level power consumption information can lead to considerable energy savings. Smart meters are being adopted in several countries, but they are only capable of measuring the total power consumption. NonIntrusive Load Monitoring (NILM) aims to infer the power consumption of individual electrical loads by analyzing the aggregate power signal taken from a single-point measurement. Most existing NILM solutions are offline methods that do not allow the end-user to get real-time feedback on his energy consumption. In this paper, we present a near real-time NILM solution based on multi-label classification and multi-output regression. We use the multi-label classifier to predict the state of each load and use the multi-output regressor to estimate the disaggregated active power consumptions. We test our method using a publically available dataset of real power measurements. Performance results show that the proposed near real-time method can accurately estimate the energy consumption of the targeted loads with an average relative energy error of 1.55 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信