Hohle一元逻辑的公理化扩展

E. Turunen
{"title":"Hohle一元逻辑的公理化扩展","authors":"E. Turunen","doi":"10.2991/eusflat.2011.16","DOIUrl":null,"url":null,"abstract":"We introduce an axiomatic extension of H¨ Monoidal Logic called Semi‐divisible Monoidal Logic, and prove that it is complete by showing that semi‐divisibility is preserved in MacNeille completion. Moreover, we introduce Strong semi‐ divisible Monoidal Logic and conjecture that a predicate formula is derivable in Strong Semi‐divisible Monadic logic if, and only if its double negation ¬¬ is derivable in Eukasiewicz logic.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Axiomatic Extensions of Hohle's Monoidal Logic\",\"authors\":\"E. Turunen\",\"doi\":\"10.2991/eusflat.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an axiomatic extension of H¨ Monoidal Logic called Semi‐divisible Monoidal Logic, and prove that it is complete by showing that semi‐divisibility is preserved in MacNeille completion. Moreover, we introduce Strong semi‐ divisible Monoidal Logic and conjecture that a predicate formula is derivable in Strong Semi‐divisible Monadic logic if, and only if its double negation ¬¬ is derivable in Eukasiewicz logic.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了半可分单形逻辑的公理扩展,并通过证明半可分性在MacNeille补全中是保持的,证明了半可分逻辑是完备的。此外,我们引入了强半可分一元逻辑,并推测一个谓词公式在强半可分一元逻辑中是可导的,当且仅当它的双重否定在Eukasiewicz逻辑中是可导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axiomatic Extensions of Hohle's Monoidal Logic
We introduce an axiomatic extension of H¨ Monoidal Logic called Semi‐divisible Monoidal Logic, and prove that it is complete by showing that semi‐divisibility is preserved in MacNeille completion. Moreover, we introduce Strong semi‐ divisible Monoidal Logic and conjecture that a predicate formula is derivable in Strong Semi‐divisible Monadic logic if, and only if its double negation ¬¬ is derivable in Eukasiewicz logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信