{"title":"支持可重用组件的模拟器构建系统的优化","authors":"D. Penry, David I. August","doi":"10.1145/775832.776065","DOIUrl":null,"url":null,"abstract":"Exploring a large portion of the microprocessor design space requires the rapid development of efficient simulators. While some systems support rapid model development through the structural composition of reusable concurrent components, the Liberty Simulation Environment (LSE) provides additional reuse-enhancing features. This paper evaluates the cost of these features and presents optimizations to reduce their impact. With these optimizations, an LSE model using custom reusable components outperforms a SystemC model using custom components by 6%.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Optimizations for a simulator construction system supporting reusable components\",\"authors\":\"D. Penry, David I. August\",\"doi\":\"10.1145/775832.776065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring a large portion of the microprocessor design space requires the rapid development of efficient simulators. While some systems support rapid model development through the structural composition of reusable concurrent components, the Liberty Simulation Environment (LSE) provides additional reuse-enhancing features. This paper evaluates the cost of these features and presents optimizations to reduce their impact. With these optimizations, an LSE model using custom reusable components outperforms a SystemC model using custom components by 6%.\",\"PeriodicalId\":167477,\"journal\":{\"name\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/775832.776065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.776065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizations for a simulator construction system supporting reusable components
Exploring a large portion of the microprocessor design space requires the rapid development of efficient simulators. While some systems support rapid model development through the structural composition of reusable concurrent components, the Liberty Simulation Environment (LSE) provides additional reuse-enhancing features. This paper evaluates the cost of these features and presents optimizations to reduce their impact. With these optimizations, an LSE model using custom reusable components outperforms a SystemC model using custom components by 6%.