基于交叉熵和遗传算法的多级阈值分割方法

Shu-Chien Huang
{"title":"基于交叉熵和遗传算法的多级阈值分割方法","authors":"Shu-Chien Huang","doi":"10.1109/ICICIC.2009.29","DOIUrl":null,"url":null,"abstract":"Threshold selection is one of the most important issues in image processing. In this paper, a general technique for multilevel thresholding based on cross entropy is proposed. Then, a genetic algorithm is designed especially for searching for the near-optimal or optimal thresholds. The effectiveness and efficiency of the proposed method is demonstrated by using well-known images.","PeriodicalId":240226,"journal":{"name":"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Thresholding Method Based on Cross Entropy and Genetic Algorithms\",\"authors\":\"Shu-Chien Huang\",\"doi\":\"10.1109/ICICIC.2009.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Threshold selection is one of the most important issues in image processing. In this paper, a general technique for multilevel thresholding based on cross entropy is proposed. Then, a genetic algorithm is designed especially for searching for the near-optimal or optimal thresholds. The effectiveness and efficiency of the proposed method is demonstrated by using well-known images.\",\"PeriodicalId\":240226,\"journal\":{\"name\":\"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIC.2009.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIC.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阈值选择是图像处理中的一个重要问题。本文提出了一种基于交叉熵的多级阈值分割的通用技术。然后,设计了一种专门用于搜索接近最优或最优阈值的遗传算法。利用已知图像验证了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multilevel Thresholding Method Based on Cross Entropy and Genetic Algorithms
Threshold selection is one of the most important issues in image processing. In this paper, a general technique for multilevel thresholding based on cross entropy is proposed. Then, a genetic algorithm is designed especially for searching for the near-optimal or optimal thresholds. The effectiveness and efficiency of the proposed method is demonstrated by using well-known images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信