改进的VQ-MAP及其与LS-SVM的结合用于说话人识别

Zhan Ling, Zhao Hong
{"title":"改进的VQ-MAP及其与LS-SVM的结合用于说话人识别","authors":"Zhan Ling, Zhao Hong","doi":"10.1109/ANTHOLOGY.2013.6784856","DOIUrl":null,"url":null,"abstract":"Maximum a posteriori vector quantization (VQ-MAP) procedure adapts the mean vectors only and weights were not considered. To solve this problem,this paper proposes the improved VQ-MAP procedure which uses weighted mean vector to replace mean vector. Adaptive parameter sets in the improved VQ-MAP procedure are used as the training samples of least square support vector machines(LS-SVM) in speaker recognition system. According to the results of simulation using Matlab, speaker recognition system based on VQ-MAP and LS-SVM uses less training time of SVMs and it also has high recognition rate.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The improved VQ-MAP and its combination with LS-SVM for speaker recognition\",\"authors\":\"Zhan Ling, Zhao Hong\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum a posteriori vector quantization (VQ-MAP) procedure adapts the mean vectors only and weights were not considered. To solve this problem,this paper proposes the improved VQ-MAP procedure which uses weighted mean vector to replace mean vector. Adaptive parameter sets in the improved VQ-MAP procedure are used as the training samples of least square support vector machines(LS-SVM) in speaker recognition system. According to the results of simulation using Matlab, speaker recognition system based on VQ-MAP and LS-SVM uses less training time of SVMs and it also has high recognition rate.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最大后验向量量化(VQ-MAP)方法仅适用于平均向量,不考虑权重。为了解决这一问题,本文提出了改进的VQ-MAP算法,用加权平均向量代替平均向量。将改进的VQ-MAP过程中的自适应参数集作为最小二乘支持向量机(LS-SVM)在说话人识别系统中的训练样本。Matlab仿真结果表明,基于VQ-MAP和LS-SVM的说话人识别系统使用支持向量机训练时间少,识别率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The improved VQ-MAP and its combination with LS-SVM for speaker recognition
Maximum a posteriori vector quantization (VQ-MAP) procedure adapts the mean vectors only and weights were not considered. To solve this problem,this paper proposes the improved VQ-MAP procedure which uses weighted mean vector to replace mean vector. Adaptive parameter sets in the improved VQ-MAP procedure are used as the training samples of least square support vector machines(LS-SVM) in speaker recognition system. According to the results of simulation using Matlab, speaker recognition system based on VQ-MAP and LS-SVM uses less training time of SVMs and it also has high recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信