排列图中多个生成树的无拥塞嵌入

Yuh-Shyan Chen, T. Juang, E. Tseng
{"title":"排列图中多个生成树的无拥塞嵌入","authors":"Yuh-Shyan Chen, T. Juang, E. Tseng","doi":"10.1109/ICPADS.1998.741097","DOIUrl":null,"url":null,"abstract":"The arrangement graph A/sub n,k/ is a generalization of star graph (n-k=1) and more flexible than the star graph. In this paper we consider the embedding of multiple spanning trees in an arrangement graph with the objective of being congestion-free. This is first result to exploit multiple spanning trees in the arrangement graphs. We develop a congestion-free embedding of n-k spanning trees with height 2k-1 in an (n, k)-dimensional arrangement graph.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Congestion-free embedding of multiple spanning trees in an arrangement graph\",\"authors\":\"Yuh-Shyan Chen, T. Juang, E. Tseng\",\"doi\":\"10.1109/ICPADS.1998.741097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arrangement graph A/sub n,k/ is a generalization of star graph (n-k=1) and more flexible than the star graph. In this paper we consider the embedding of multiple spanning trees in an arrangement graph with the objective of being congestion-free. This is first result to exploit multiple spanning trees in the arrangement graphs. We develop a congestion-free embedding of n-k spanning trees with height 2k-1 in an (n, k)-dimensional arrangement graph.\",\"PeriodicalId\":226947,\"journal\":{\"name\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1998.741097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

排列图A/sub n,k/是星图(n-k=1)的推广,比星图更灵活。本文以无拥塞为目标,研究了排列图中多个生成树的嵌入问题。这是利用排列图中多个生成树的第一个结果。我们在(n, k)维排列图中开发了高度为2k-1的n-k生成树的无拥塞嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congestion-free embedding of multiple spanning trees in an arrangement graph
The arrangement graph A/sub n,k/ is a generalization of star graph (n-k=1) and more flexible than the star graph. In this paper we consider the embedding of multiple spanning trees in an arrangement graph with the objective of being congestion-free. This is first result to exploit multiple spanning trees in the arrangement graphs. We develop a congestion-free embedding of n-k spanning trees with height 2k-1 in an (n, k)-dimensional arrangement graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信