{"title":"一种用于无电容MISS隧道二极管存储器的鲁棒阵列结构","authors":"S. Hanzawa, T. Sakata, T. Sekiguchi, H. Matsuoka","doi":"10.1109/VLSIC.2002.1015070","DOIUrl":null,"url":null,"abstract":"With the aim of applying a MISS tunnel-diode cell to a high-density RAM, we studied its problems and developed three circuit techniques to solve them. The first, a hierarchical bit-line structure increases the number of memory cells in a bit-line and reduces the number of sense amplifiers. The second, a twin-dummy-cell technique generates a proper reference signal to discriminate read currents. The third, a standby-voltage control scheme reduces background currents and suppresses the degeneration of the signal current. These techniques enable a high-density RAM to use the capacitorless MISS-diode memory cell, whose effective cell area is 6F/sup 2/ (F: minimum feature size). The third technique increases the signal current from 0.25 to 0.85 compared to the original one.","PeriodicalId":162493,"journal":{"name":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A robust array architecture for a capacitorless MISS tunnel-diode memory\",\"authors\":\"S. Hanzawa, T. Sakata, T. Sekiguchi, H. Matsuoka\",\"doi\":\"10.1109/VLSIC.2002.1015070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the aim of applying a MISS tunnel-diode cell to a high-density RAM, we studied its problems and developed three circuit techniques to solve them. The first, a hierarchical bit-line structure increases the number of memory cells in a bit-line and reduces the number of sense amplifiers. The second, a twin-dummy-cell technique generates a proper reference signal to discriminate read currents. The third, a standby-voltage control scheme reduces background currents and suppresses the degeneration of the signal current. These techniques enable a high-density RAM to use the capacitorless MISS-diode memory cell, whose effective cell area is 6F/sup 2/ (F: minimum feature size). The third technique increases the signal current from 0.25 to 0.85 compared to the original one.\",\"PeriodicalId\":162493,\"journal\":{\"name\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2002.1015070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2002.1015070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A robust array architecture for a capacitorless MISS tunnel-diode memory
With the aim of applying a MISS tunnel-diode cell to a high-density RAM, we studied its problems and developed three circuit techniques to solve them. The first, a hierarchical bit-line structure increases the number of memory cells in a bit-line and reduces the number of sense amplifiers. The second, a twin-dummy-cell technique generates a proper reference signal to discriminate read currents. The third, a standby-voltage control scheme reduces background currents and suppresses the degeneration of the signal current. These techniques enable a high-density RAM to use the capacitorless MISS-diode memory cell, whose effective cell area is 6F/sup 2/ (F: minimum feature size). The third technique increases the signal current from 0.25 to 0.85 compared to the original one.