双像素特征在人脸检测中的应用

Ido Nissenboim, D. Keren, M. Werman
{"title":"双像素特征在人脸检测中的应用","authors":"Ido Nissenboim, D. Keren, M. Werman","doi":"10.1109/SITIS.2008.28","DOIUrl":null,"url":null,"abstract":"We propose a \"quick rejection\" paradigm which is applied to face detection. The features we use are arguably the simplest possible: a threshold on the difference between the grey levels of two pixels. No negative examples are used for training; instead, we use a simple statistical model of natural images. The resulting features are easy to find, extremely fast to apply, and achieve a good detection rate.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying Two-Pixel Features to Face Detection\",\"authors\":\"Ido Nissenboim, D. Keren, M. Werman\",\"doi\":\"10.1109/SITIS.2008.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a \\\"quick rejection\\\" paradigm which is applied to face detection. The features we use are arguably the simplest possible: a threshold on the difference between the grey levels of two pixels. No negative examples are used for training; instead, we use a simple statistical model of natural images. The resulting features are easy to find, extremely fast to apply, and achieve a good detection rate.\",\"PeriodicalId\":202698,\"journal\":{\"name\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2008.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种应用于人脸检测的“快速拒绝”范式。我们使用的特征可以说是最简单的:两个像素的灰度差的阈值。没有反面例子用于训练;相反,我们使用一个简单的自然图像统计模型。所得到的特征很容易找到,应用速度极快,并实现了良好的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Two-Pixel Features to Face Detection
We propose a "quick rejection" paradigm which is applied to face detection. The features we use are arguably the simplest possible: a threshold on the difference between the grey levels of two pixels. No negative examples are used for training; instead, we use a simple statistical model of natural images. The resulting features are easy to find, extremely fast to apply, and achieve a good detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信