用于识别Web社区的可扩展种子扩展

Min Han, Hong Shen, Xianchao Zhang
{"title":"用于识别Web社区的可扩展种子扩展","authors":"Min Han, Hong Shen, Xianchao Zhang","doi":"10.1109/PAAP.2011.64","DOIUrl":null,"url":null,"abstract":"We study the problem of identifying Web communities around some seed vertex. In this work, we propose a fast graph algorithm to expand Web communities in a scalable style. Given a seed vertex, our algorithm computes approximate personalized PageRank vectors with better and better approximations, and finds the smallest conductance sets on these vectors as candidate communities in nearly-linear time. At the end, it returns the candidate community with the smallest conductance as the result community. We also define local community profile (LCP) to investigate structural and statistical properties of Web communities in a local range. Theoretical analysis and primary experiments both show the efficiency of the proposed algorithm and the quality of the results.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Seed Expansion for Identifying Web Communities\",\"authors\":\"Min Han, Hong Shen, Xianchao Zhang\",\"doi\":\"10.1109/PAAP.2011.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of identifying Web communities around some seed vertex. In this work, we propose a fast graph algorithm to expand Web communities in a scalable style. Given a seed vertex, our algorithm computes approximate personalized PageRank vectors with better and better approximations, and finds the smallest conductance sets on these vectors as candidate communities in nearly-linear time. At the end, it returns the candidate community with the smallest conductance as the result community. We also define local community profile (LCP) to investigate structural and statistical properties of Web communities in a local range. Theoretical analysis and primary experiments both show the efficiency of the proposed algorithm and the quality of the results.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了围绕种子顶点的网络社区识别问题。在这项工作中,我们提出了一种快速的图形算法,以可扩展的方式扩展Web社区。给定一个种子顶点,我们的算法以越来越好的近似值计算近似个性化PageRank向量,并在接近线性的时间内找到这些向量上最小的电导集作为候选社区。最后,它返回电导最小的候选社区作为结果社区。我们还定义了本地社区概要(LCP)来研究本地范围内Web社区的结构和统计特性。理论分析和初步实验均表明了该算法的有效性和结果的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Seed Expansion for Identifying Web Communities
We study the problem of identifying Web communities around some seed vertex. In this work, we propose a fast graph algorithm to expand Web communities in a scalable style. Given a seed vertex, our algorithm computes approximate personalized PageRank vectors with better and better approximations, and finds the smallest conductance sets on these vectors as candidate communities in nearly-linear time. At the end, it returns the candidate community with the smallest conductance as the result community. We also define local community profile (LCP) to investigate structural and statistical properties of Web communities in a local range. Theoretical analysis and primary experiments both show the efficiency of the proposed algorithm and the quality of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信