虚拟平台人脸检测与识别软硬件协同设计

Miyoung Lee, Youngseok Baek, Seongmin Kim, Hyuk Kim, B. Koo, Joo-Hyun Lee
{"title":"虚拟平台人脸检测与识别软硬件协同设计","authors":"Miyoung Lee, Youngseok Baek, Seongmin Kim, Hyuk Kim, B. Koo, Joo-Hyun Lee","doi":"10.1109/ICCE-ASIA.2016.7804730","DOIUrl":null,"url":null,"abstract":"In this paper, we present a FPGA implementation of face detection hardware (HW) and also address face recognition software (SW) on virtual platform. We apply very deeply-cascaded classifier which is composed of heterogeneous feature-classifiers to capture various characteristics of images. We use 2 step classifiers, the first searches for the coarse features and the second for the fine features. Both of the features are composed of HAAR like feature classifiers and Gabor classifiers while the 1st coarse classifier uses 700 classifiers and the 2nd uses 1350 classifiers. For the very-deeply cascaded face detector, we developed dedicated HW engine to process a feature per a cycle. The face detection is implemented in a Xilinx Virtex-7 device. For face recognition SW co-design, we also developed a virtual platform (VP). We co-verified face detection engine and face recognition SW running on a conventional operating system (OS) using the VP. Face detector operates over 30 frame/s at 50 MHz frequency for real-time applications up-to 640×480 size image.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HW/SW co-design of face detection & recognition on virtual platform\",\"authors\":\"Miyoung Lee, Youngseok Baek, Seongmin Kim, Hyuk Kim, B. Koo, Joo-Hyun Lee\",\"doi\":\"10.1109/ICCE-ASIA.2016.7804730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a FPGA implementation of face detection hardware (HW) and also address face recognition software (SW) on virtual platform. We apply very deeply-cascaded classifier which is composed of heterogeneous feature-classifiers to capture various characteristics of images. We use 2 step classifiers, the first searches for the coarse features and the second for the fine features. Both of the features are composed of HAAR like feature classifiers and Gabor classifiers while the 1st coarse classifier uses 700 classifiers and the 2nd uses 1350 classifiers. For the very-deeply cascaded face detector, we developed dedicated HW engine to process a feature per a cycle. The face detection is implemented in a Xilinx Virtex-7 device. For face recognition SW co-design, we also developed a virtual platform (VP). We co-verified face detection engine and face recognition SW running on a conventional operating system (OS) using the VP. Face detector operates over 30 frame/s at 50 MHz frequency for real-time applications up-to 640×480 size image.\",\"PeriodicalId\":229557,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2016.7804730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个FPGA实现的人脸检测硬件(HW),并解决了虚拟平台上的人脸识别软件(SW)。我们采用由异构特征分类器组成的深度级联分类器来捕获图像的各种特征。我们使用两步分类器,第一步搜索粗特征,第二步搜索细特征。两个特征都由HAAR类特征分类器和Gabor分类器组成,而第一个粗分类器使用700个分类器,第二个粗分类器使用1350个分类器。对于深度级联人脸检测器,我们开发了专用的HW引擎,每个周期处理一个特征。人脸检测在Xilinx Virtex-7设备中实现。对于人脸识别软件协同设计,我们还开发了虚拟平台(VP)。我们使用VP共同验证了在传统操作系统(OS)上运行的人脸检测引擎和人脸识别软件。人脸检测器在50 MHz频率下运行超过30帧/秒,用于实时应用,最高可达640×480大小的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HW/SW co-design of face detection & recognition on virtual platform
In this paper, we present a FPGA implementation of face detection hardware (HW) and also address face recognition software (SW) on virtual platform. We apply very deeply-cascaded classifier which is composed of heterogeneous feature-classifiers to capture various characteristics of images. We use 2 step classifiers, the first searches for the coarse features and the second for the fine features. Both of the features are composed of HAAR like feature classifiers and Gabor classifiers while the 1st coarse classifier uses 700 classifiers and the 2nd uses 1350 classifiers. For the very-deeply cascaded face detector, we developed dedicated HW engine to process a feature per a cycle. The face detection is implemented in a Xilinx Virtex-7 device. For face recognition SW co-design, we also developed a virtual platform (VP). We co-verified face detection engine and face recognition SW running on a conventional operating system (OS) using the VP. Face detector operates over 30 frame/s at 50 MHz frequency for real-time applications up-to 640×480 size image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信