电力系统扰动记录的自动分析:智能电网大数据视角

A. Ukil, R. Zivanovic
{"title":"电力系统扰动记录的自动分析:智能电网大数据视角","authors":"A. Ukil, R. Zivanovic","doi":"10.1109/ISGT-ASIA.2014.6873776","DOIUrl":null,"url":null,"abstract":"Analysis of faults and disturbances play crucial roles in secure and reliable electrical power supply. Digital fault recorders (DFR) enable digital recording of the power systems transient events with high quality and huge quantity. However, transformation of data to information, expectedly in an automated way, is a big challenge for the power utilities worldwide. This is a key focus for realizing the `Smart Grid'. In this paper, the architecture and specifications for the primary and the secondary information for the automated systems are described. This provides qualitative and quantitative guidelines about the information to derive out of the disturbance data. A quantified estimate of big data for the substations, has been estimated in the paper. Possible ways of reducing the big data by utilizing intelligent segmentation techniques are described, substantiated by real example. Utilization of centralized protection and remote disturbance analysis for reducing big disturbance data are also discussed.","PeriodicalId":444960,"journal":{"name":"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Automated analysis of power systems disturbance records: Smart Grid big data perspective\",\"authors\":\"A. Ukil, R. Zivanovic\",\"doi\":\"10.1109/ISGT-ASIA.2014.6873776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of faults and disturbances play crucial roles in secure and reliable electrical power supply. Digital fault recorders (DFR) enable digital recording of the power systems transient events with high quality and huge quantity. However, transformation of data to information, expectedly in an automated way, is a big challenge for the power utilities worldwide. This is a key focus for realizing the `Smart Grid'. In this paper, the architecture and specifications for the primary and the secondary information for the automated systems are described. This provides qualitative and quantitative guidelines about the information to derive out of the disturbance data. A quantified estimate of big data for the substations, has been estimated in the paper. Possible ways of reducing the big data by utilizing intelligent segmentation techniques are described, substantiated by real example. Utilization of centralized protection and remote disturbance analysis for reducing big disturbance data are also discussed.\",\"PeriodicalId\":444960,\"journal\":{\"name\":\"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-ASIA.2014.6873776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-ASIA.2014.6873776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

故障和干扰分析对安全可靠的电力供应起着至关重要的作用。数字故障记录仪(DFR)能够对电力系统暂态事件进行高质量、海量的数字记录。然而,将数据以自动化的方式转换为信息,对全球电力公司来说是一个巨大的挑战。这是实现“智能电网”的重点。本文描述了自动化系统主信息和辅助信息的体系结构和规范。这为从扰动数据中得出的信息提供了定性和定量的指导。本文对变电站的大数据进行了量化估计。描述了利用智能分割技术减少大数据的可能方法,并通过实例进行了验证。讨论了集中保护和远程干扰分析在减少大干扰数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated analysis of power systems disturbance records: Smart Grid big data perspective
Analysis of faults and disturbances play crucial roles in secure and reliable electrical power supply. Digital fault recorders (DFR) enable digital recording of the power systems transient events with high quality and huge quantity. However, transformation of data to information, expectedly in an automated way, is a big challenge for the power utilities worldwide. This is a key focus for realizing the `Smart Grid'. In this paper, the architecture and specifications for the primary and the secondary information for the automated systems are described. This provides qualitative and quantitative guidelines about the information to derive out of the disturbance data. A quantified estimate of big data for the substations, has been estimated in the paper. Possible ways of reducing the big data by utilizing intelligent segmentation techniques are described, substantiated by real example. Utilization of centralized protection and remote disturbance analysis for reducing big disturbance data are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信