Kensuke Iizuka, Kohe Ito, Kazuei Hironaka, H. Amano
{"title":"一种将卷积层划分为多个fpga的方法","authors":"Kensuke Iizuka, Kohe Ito, Kazuei Hironaka, H. Amano","doi":"10.1109/ISOCC50952.2020.9332929","DOIUrl":null,"url":null,"abstract":"We propose a partition method to improve the performance of convolutional neural networks (CNN) on a multi-FPGA system called Flow-in-Cloud (FiC) and implement the 2nd layer of AlexNet on FiC. As a result, our implementation is slightly more energy-efficient than the CPU and the GPU with an optimized machine learning framework.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Partitioning Convolutional Layer to Multiple FPGAs\",\"authors\":\"Kensuke Iizuka, Kohe Ito, Kazuei Hironaka, H. Amano\",\"doi\":\"10.1109/ISOCC50952.2020.9332929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a partition method to improve the performance of convolutional neural networks (CNN) on a multi-FPGA system called Flow-in-Cloud (FiC) and implement the 2nd layer of AlexNet on FiC. As a result, our implementation is slightly more energy-efficient than the CPU and the GPU with an optimized machine learning framework.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Method of Partitioning Convolutional Layer to Multiple FPGAs
We propose a partition method to improve the performance of convolutional neural networks (CNN) on a multi-FPGA system called Flow-in-Cloud (FiC) and implement the 2nd layer of AlexNet on FiC. As a result, our implementation is slightly more energy-efficient than the CPU and the GPU with an optimized machine learning framework.