DBREACH:使用压缩侧通道窃取数据库

Mathew Hogan, Yan Michalevsky, Saba Eskandarian
{"title":"DBREACH:使用压缩侧通道窃取数据库","authors":"Mathew Hogan, Yan Michalevsky, Saba Eskandarian","doi":"10.1109/SP46215.2023.10179359","DOIUrl":null,"url":null,"abstract":"We introduce new compression side-channel attacks against database storage engines that simultaneously support compression of database pages and encryption at rest. Given only limited, indirect access to an encrypted and compressed database table, our attacks extract arbitrary plaintext with high accuracy. We demonstrate accurate and performant attacks on the InnoDB storage engine variants found in MariaDB and MySQL as well as the WiredTiger storage engine for MongoDB.Our attacks overcome obstacles unique to the database setting that render previous techniques developed to attack TLS ineffective. Unlike the web setting, where the exact length of a compressed and encrypted message can be observed, we make use of only approximate ciphertext size information gleaned from file sizes on disk. We amplify this noisy signal and combine it with new attack heuristics tailored to the database setting to extract secret plaintext. Our attacks can detect whether a random string appears in a table with > 90% accuracy and extract 10-character random strings from encrypted tables with > 95% success.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DBREACH: Stealing from Databases Using Compression Side Channels\",\"authors\":\"Mathew Hogan, Yan Michalevsky, Saba Eskandarian\",\"doi\":\"10.1109/SP46215.2023.10179359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new compression side-channel attacks against database storage engines that simultaneously support compression of database pages and encryption at rest. Given only limited, indirect access to an encrypted and compressed database table, our attacks extract arbitrary plaintext with high accuracy. We demonstrate accurate and performant attacks on the InnoDB storage engine variants found in MariaDB and MySQL as well as the WiredTiger storage engine for MongoDB.Our attacks overcome obstacles unique to the database setting that render previous techniques developed to attack TLS ineffective. Unlike the web setting, where the exact length of a compressed and encrypted message can be observed, we make use of only approximate ciphertext size information gleaned from file sizes on disk. We amplify this noisy signal and combine it with new attack heuristics tailored to the database setting to extract secret plaintext. Our attacks can detect whether a random string appears in a table with > 90% accuracy and extract 10-character random strings from encrypted tables with > 95% success.\",\"PeriodicalId\":439989,\"journal\":{\"name\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP46215.2023.10179359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们针对数据库存储引擎引入了新的压缩侧信道攻击,这些攻击同时支持数据库页面压缩和静态加密。只要对加密和压缩的数据库表进行有限的间接访问,我们的攻击就可以高精度地提取任意明文。我们演示了对MariaDB和MySQL中的InnoDB存储引擎变体以及MongoDB的WiredTiger存储引擎的准确和高性能攻击。我们的攻击克服了数据库设置的独特障碍,这些障碍使得以前开发的攻击TLS的技术无效。与web设置不同,可以观察到压缩和加密消息的确切长度,我们只使用从磁盘上的文件大小收集的近似密文大小信息。我们放大这种噪声信号,并将其与针对数据库设置量身定制的新攻击启发式相结合,以提取秘密明文。我们的攻击可以检测随机字符串是否出现在表中,准确率> 90%,并且可以从加密表中提取10个字符的随机字符串,成功率> 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DBREACH: Stealing from Databases Using Compression Side Channels
We introduce new compression side-channel attacks against database storage engines that simultaneously support compression of database pages and encryption at rest. Given only limited, indirect access to an encrypted and compressed database table, our attacks extract arbitrary plaintext with high accuracy. We demonstrate accurate and performant attacks on the InnoDB storage engine variants found in MariaDB and MySQL as well as the WiredTiger storage engine for MongoDB.Our attacks overcome obstacles unique to the database setting that render previous techniques developed to attack TLS ineffective. Unlike the web setting, where the exact length of a compressed and encrypted message can be observed, we make use of only approximate ciphertext size information gleaned from file sizes on disk. We amplify this noisy signal and combine it with new attack heuristics tailored to the database setting to extract secret plaintext. Our attacks can detect whether a random string appears in a table with > 90% accuracy and extract 10-character random strings from encrypted tables with > 95% success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信