印度语言文本翻译

Rajesh V, B. Permual, Bingi Prasanna, Bala Haripriya, Ravva Sravani, Somala Nandini
{"title":"印度语言文本翻译","authors":"Rajesh V, B. Permual, Bingi Prasanna, Bala Haripriya, Ravva Sravani, Somala Nandini","doi":"10.1109/ViTECoN58111.2023.10157002","DOIUrl":null,"url":null,"abstract":"To displays a language translation model using LSTM for Indian languages. Since in India we have various languages it is essential to remove the language barrier, so that many people can communication in an effective manner. The model uses an encoder-decoder architecture and is trained on a large dataset of parallel texts. The accuracy of the model is evaluated using common metrics, and the results show that the model is effective in translating text between Indian languages. The study demonstrates the effectiveness of LSTM can be utilized to create more successful language translation models for this language group for Indian languages.","PeriodicalId":407488,"journal":{"name":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Translation for Indian Languages\",\"authors\":\"Rajesh V, B. Permual, Bingi Prasanna, Bala Haripriya, Ravva Sravani, Somala Nandini\",\"doi\":\"10.1109/ViTECoN58111.2023.10157002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To displays a language translation model using LSTM for Indian languages. Since in India we have various languages it is essential to remove the language barrier, so that many people can communication in an effective manner. The model uses an encoder-decoder architecture and is trained on a large dataset of parallel texts. The accuracy of the model is evaluated using common metrics, and the results show that the model is effective in translating text between Indian languages. The study demonstrates the effectiveness of LSTM can be utilized to create more successful language translation models for this language group for Indian languages.\",\"PeriodicalId\":407488,\"journal\":{\"name\":\"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ViTECoN58111.2023.10157002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ViTECoN58111.2023.10157002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用LSTM显示印度语言的语言翻译模型。在印度,我们有多种语言,消除语言障碍很重要,这样很多人才能有效地沟通。该模型使用编码器-解码器架构,并在并行文本的大型数据集上进行训练。使用常用度量对模型的准确性进行了评价,结果表明该模型在印度语文本翻译中是有效的。研究表明,LSTM的有效性可以用来为印度语言创建更成功的语言翻译模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Translation for Indian Languages
To displays a language translation model using LSTM for Indian languages. Since in India we have various languages it is essential to remove the language barrier, so that many people can communication in an effective manner. The model uses an encoder-decoder architecture and is trained on a large dataset of parallel texts. The accuracy of the model is evaluated using common metrics, and the results show that the model is effective in translating text between Indian languages. The study demonstrates the effectiveness of LSTM can be utilized to create more successful language translation models for this language group for Indian languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信