S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara, H. Akamatsu
{"title":"45nm 2port 8T-SRAM,采用分层复制位线技术,可避免同步读写访问问题","authors":"S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara, H. Akamatsu","doi":"10.1109/VLSIC.2007.4342740","DOIUrl":null,"url":null,"abstract":"We propose a new 2port (2P) SRAM with an 8T single-bit-line (SBL) memory cell for 45 nm SOCs. Access time tends to be slower as the device size is scaled down because of the random threshold-voltage variations. The Divided read Bit line scheme with Shared local Amplifier (DBSA) realizes fast access time without increasing area penalty. We also show an additional important issue of a simultaneous Read and Write (R/W) access at the same row by using DBSA with the 8 T-SBL memory cell. A rise of the storage node voltage causes the misreading. The Read End detecting Replica circuit (RER) and the Local read bit line with Dummy Capacitance (LDC) are introduced to solve this issue. A 128 BLtimes512WL 64Kb 2P-SRAM macro which cell size is 0.597mum2 using these schemes was fabricated by 45 nm LSTP CMOS process.","PeriodicalId":261092,"journal":{"name":"2007 IEEE Symposium on VLSI Circuits","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A 45nm 2port 8T-SRAM using hierarchical replica bitline technique with immunity from simultaneous R/W access issues\",\"authors\":\"S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara, H. Akamatsu\",\"doi\":\"10.1109/VLSIC.2007.4342740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new 2port (2P) SRAM with an 8T single-bit-line (SBL) memory cell for 45 nm SOCs. Access time tends to be slower as the device size is scaled down because of the random threshold-voltage variations. The Divided read Bit line scheme with Shared local Amplifier (DBSA) realizes fast access time without increasing area penalty. We also show an additional important issue of a simultaneous Read and Write (R/W) access at the same row by using DBSA with the 8 T-SBL memory cell. A rise of the storage node voltage causes the misreading. The Read End detecting Replica circuit (RER) and the Local read bit line with Dummy Capacitance (LDC) are introduced to solve this issue. A 128 BLtimes512WL 64Kb 2P-SRAM macro which cell size is 0.597mum2 using these schemes was fabricated by 45 nm LSTP CMOS process.\",\"PeriodicalId\":261092,\"journal\":{\"name\":\"2007 IEEE Symposium on VLSI Circuits\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2007.4342740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2007.4342740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 45nm 2port 8T-SRAM using hierarchical replica bitline technique with immunity from simultaneous R/W access issues
We propose a new 2port (2P) SRAM with an 8T single-bit-line (SBL) memory cell for 45 nm SOCs. Access time tends to be slower as the device size is scaled down because of the random threshold-voltage variations. The Divided read Bit line scheme with Shared local Amplifier (DBSA) realizes fast access time without increasing area penalty. We also show an additional important issue of a simultaneous Read and Write (R/W) access at the same row by using DBSA with the 8 T-SBL memory cell. A rise of the storage node voltage causes the misreading. The Read End detecting Replica circuit (RER) and the Local read bit line with Dummy Capacitance (LDC) are introduced to solve this issue. A 128 BLtimes512WL 64Kb 2P-SRAM macro which cell size is 0.597mum2 using these schemes was fabricated by 45 nm LSTP CMOS process.