具有红光红移的宇宙学中的曲率压力

D. F. Crawford
{"title":"具有红光红移的宇宙学中的曲率压力","authors":"D. F. Crawford","doi":"10.1071/PH98065","DOIUrl":null,"url":null,"abstract":"A hypothesis is presented that electromagnetic forces that prevent ions from following geodesics result in a curvature pressure that is very important in astrophysics. It may partly explain the solar neutrino deficiency and it may be the engine that drives astrophysical jets. However, the most important consequence is that, under general relativity without a cosmological constant, it leads to a static and stable cosmology. Combining an earlier hypothesis of a gravitational interaction of photons and particles with curved spacetime, a static cosmology is developed that predicts a Hubble constant of H = 60 . 2 km s− 1 Mpc− 1 and a microwave background radiation with a temperature of 3 . 0 K. The background X-ray radiation is explained, and observations of the quasar luminosity function and the angular distribution of radio sources have a better fit with this cosmology than they do with standard big-bang models. Although recent results (Pahre et al . 1996) for the Tolman surface brightness test favour the standard big-bang cosmology, they are not completely inconsistent with a static tired-light model. Most observations that imply the existence of dark matter measure redshift, interpret them as velocities, and invoke the virial theorem to predict masses that are much greater than those deduced from luminosities. If, however, most of these redshifts are due to the gravitational interaction in intervening clouds, no dark matter is required. Observations of quasar absorption lines, a microwave background temperature at a redshift of z = 1 . 9731, type 1a supernovae light curves and the Butcher–Oemler effect are discussed. The evidence is not strong enough to completely eliminate a non-evolving cosmology. The result is a static and stable cosmological model that agrees with most of the current observations.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Curvature pressure in a cosmology with a tired-light redshift\",\"authors\":\"D. F. Crawford\",\"doi\":\"10.1071/PH98065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hypothesis is presented that electromagnetic forces that prevent ions from following geodesics result in a curvature pressure that is very important in astrophysics. It may partly explain the solar neutrino deficiency and it may be the engine that drives astrophysical jets. However, the most important consequence is that, under general relativity without a cosmological constant, it leads to a static and stable cosmology. Combining an earlier hypothesis of a gravitational interaction of photons and particles with curved spacetime, a static cosmology is developed that predicts a Hubble constant of H = 60 . 2 km s− 1 Mpc− 1 and a microwave background radiation with a temperature of 3 . 0 K. The background X-ray radiation is explained, and observations of the quasar luminosity function and the angular distribution of radio sources have a better fit with this cosmology than they do with standard big-bang models. Although recent results (Pahre et al . 1996) for the Tolman surface brightness test favour the standard big-bang cosmology, they are not completely inconsistent with a static tired-light model. Most observations that imply the existence of dark matter measure redshift, interpret them as velocities, and invoke the virial theorem to predict masses that are much greater than those deduced from luminosities. If, however, most of these redshifts are due to the gravitational interaction in intervening clouds, no dark matter is required. Observations of quasar absorption lines, a microwave background temperature at a redshift of z = 1 . 9731, type 1a supernovae light curves and the Butcher–Oemler effect are discussed. The evidence is not strong enough to completely eliminate a non-evolving cosmology. The result is a static and stable cosmological model that agrees with most of the current observations.\",\"PeriodicalId\":170873,\"journal\":{\"name\":\"Australian Journal of Physics\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PH98065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH98065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种假设,即电磁力阻止离子沿着测地线运动,从而产生曲率压力,这在天体物理学中是非常重要的。它可以部分解释太阳中微子的缺乏,它可能是驱动天体物理喷流的引擎。然而,最重要的结果是,在没有宇宙常数的广义相对论下,它导致了一个静态和稳定的宇宙学。结合早先关于光子和粒子的引力相互作用与弯曲时空的假设,一个静态宇宙学被开发出来,它预测哈勃常数H = 60。2 km s−1 Mpc−1和温度为3的微波背景辐射。0 K。背景x射线辐射得到了解释,类星体亮度函数和射电源角分布的观测结果比标准的大爆炸模型更符合这种宇宙学。尽管最近的研究结果(Pahre等。由于托尔曼表面亮度测试支持标准的大爆炸宇宙论,它们与静态的疲劳光模型并非完全不一致。大多数暗示暗物质存在的观测都测量了红移,将其解释为速度,并援引维里定理来预测质量,这些质量远远大于从光度推断出来的质量。然而,如果这些红移大部分是由于其间云层的引力相互作用,那么就不需要暗物质了。类星体吸收谱线的观测,红移为z = 1的微波背景温度。讨论了1a型超新星的光曲线和bucher - oemler效应。证据还不足以完全排除不进化的宇宙论。结果是一个静态和稳定的宇宙模型,与目前的大多数观测结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature pressure in a cosmology with a tired-light redshift
A hypothesis is presented that electromagnetic forces that prevent ions from following geodesics result in a curvature pressure that is very important in astrophysics. It may partly explain the solar neutrino deficiency and it may be the engine that drives astrophysical jets. However, the most important consequence is that, under general relativity without a cosmological constant, it leads to a static and stable cosmology. Combining an earlier hypothesis of a gravitational interaction of photons and particles with curved spacetime, a static cosmology is developed that predicts a Hubble constant of H = 60 . 2 km s− 1 Mpc− 1 and a microwave background radiation with a temperature of 3 . 0 K. The background X-ray radiation is explained, and observations of the quasar luminosity function and the angular distribution of radio sources have a better fit with this cosmology than they do with standard big-bang models. Although recent results (Pahre et al . 1996) for the Tolman surface brightness test favour the standard big-bang cosmology, they are not completely inconsistent with a static tired-light model. Most observations that imply the existence of dark matter measure redshift, interpret them as velocities, and invoke the virial theorem to predict masses that are much greater than those deduced from luminosities. If, however, most of these redshifts are due to the gravitational interaction in intervening clouds, no dark matter is required. Observations of quasar absorption lines, a microwave background temperature at a redshift of z = 1 . 9731, type 1a supernovae light curves and the Butcher–Oemler effect are discussed. The evidence is not strong enough to completely eliminate a non-evolving cosmology. The result is a static and stable cosmological model that agrees with most of the current observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信