基于熵最大化的模拟/混合信号电路随机行为建模

R. Krishnan, Wei Wu, Fang Gong, Lei He
{"title":"基于熵最大化的模拟/混合信号电路随机行为建模","authors":"R. Krishnan, Wei Wu, Fang Gong, Lei He","doi":"10.1109/ISQED.2013.6523668","DOIUrl":null,"url":null,"abstract":"Maximum entropy (MAXENT) is a powerful and flexible method for estimating the arbitrary probabilistic distribution of a stochastic variable with moment constraints. However, modeling the stochastic behavior of analog/mixed-signal (AMS) circuits using MAXENT is still unknown. In this paper, we present a MAXENT based approach to efficiently model the arbitrary behavioral distribution of AMS circuits with high accuracy. The exact behavioral distribution can be approximated by a product of exponential functions with different Lagrangian multipliers. The closest approximation can be obtained by maximizing Shannon's information entropy subject to moment constraints, leading to a nonlinear system. Classic Newton's method is used to solve the nonlinear system for the Lagrangian multipliers, which can further recover the arbitrary behavioral distribution of AMS circuits. Extensive experiments on different circuits demonstrate that the proposed MAXENT based approach offers better stability and improves the accuracy up to 110% when compared to previous AWE-based moment matching approaches, and offers up to 592x speedup when compared to Monte Carlo method.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"140 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Stochastic behavioral modeling of analog/mixed-signal circuits by maximizing entropy\",\"authors\":\"R. Krishnan, Wei Wu, Fang Gong, Lei He\",\"doi\":\"10.1109/ISQED.2013.6523668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum entropy (MAXENT) is a powerful and flexible method for estimating the arbitrary probabilistic distribution of a stochastic variable with moment constraints. However, modeling the stochastic behavior of analog/mixed-signal (AMS) circuits using MAXENT is still unknown. In this paper, we present a MAXENT based approach to efficiently model the arbitrary behavioral distribution of AMS circuits with high accuracy. The exact behavioral distribution can be approximated by a product of exponential functions with different Lagrangian multipliers. The closest approximation can be obtained by maximizing Shannon's information entropy subject to moment constraints, leading to a nonlinear system. Classic Newton's method is used to solve the nonlinear system for the Lagrangian multipliers, which can further recover the arbitrary behavioral distribution of AMS circuits. Extensive experiments on different circuits demonstrate that the proposed MAXENT based approach offers better stability and improves the accuracy up to 110% when compared to previous AWE-based moment matching approaches, and offers up to 592x speedup when compared to Monte Carlo method.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"140 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最大熵(MAXENT)是一种强大而灵活的方法,用于估计具有矩约束的随机变量的任意概率分布。然而,利用MAXENT建模模拟/混合信号(AMS)电路的随机行为仍然是未知的。在本文中,我们提出了一种基于MAXENT的方法来高效、高精度地模拟AMS电路的任意行为分布。精确的行为分布可以用不同拉格朗日乘子的指数函数的乘积来近似。在矩约束下,通过最大化香农信息熵来获得最接近的近似,从而得到非线性系统。采用经典牛顿法求解拉格朗日乘法器的非线性系统,可以进一步恢复AMS电路的任意行为分布。在不同电路上进行的大量实验表明,与之前基于awe的矩匹配方法相比,基于MAXENT的方法具有更好的稳定性,精度提高了110%,与蒙特卡罗方法相比,速度提高了592x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic behavioral modeling of analog/mixed-signal circuits by maximizing entropy
Maximum entropy (MAXENT) is a powerful and flexible method for estimating the arbitrary probabilistic distribution of a stochastic variable with moment constraints. However, modeling the stochastic behavior of analog/mixed-signal (AMS) circuits using MAXENT is still unknown. In this paper, we present a MAXENT based approach to efficiently model the arbitrary behavioral distribution of AMS circuits with high accuracy. The exact behavioral distribution can be approximated by a product of exponential functions with different Lagrangian multipliers. The closest approximation can be obtained by maximizing Shannon's information entropy subject to moment constraints, leading to a nonlinear system. Classic Newton's method is used to solve the nonlinear system for the Lagrangian multipliers, which can further recover the arbitrary behavioral distribution of AMS circuits. Extensive experiments on different circuits demonstrate that the proposed MAXENT based approach offers better stability and improves the accuracy up to 110% when compared to previous AWE-based moment matching approaches, and offers up to 592x speedup when compared to Monte Carlo method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信