铅酸蓄电池正极用四碱浆料的半悬浮制备技术

D. Pavlov, S. Ruevski
{"title":"铅酸蓄电池正极用四碱浆料的半悬浮制备技术","authors":"D. Pavlov, S. Ruevski","doi":"10.1109/BCAA.2001.905125","DOIUrl":null,"url":null,"abstract":"Summary form only given, as follows. A new technology for production of 4BS pastes for the positive (lead dioxide) plates of lead-acid batteries has been developed based on an Eirich Evactherm(R) mixer. The basic principle of this new technology is that 4BS crystals with dimensions between 20 and 25 /spl mu/m are formed first from a semi-suspension at a temperature higher than 90/spl deg/C and then the excess water is removed from the semi-suspension under vacuum until the desired paste density is obtained. During the vacuum treatment, the temperature of the paste decreases and small 4BS and PbO crystals are formed. During the paste formation procedure, the large 4BS crystals build up the PbO/sub 2/ skeleton of the PAM, whereas the small crystals form the energetic PbO/sub 2/ structure, which participates in the charge-discharge processes on cycling of the battery. It has been found, through XRD and thermo-gravitational analysis, that the 4BS particles comprise crystal and amorphous zones. The crystal zones contain water molecules part of which can be easily removed from the particles under vacuum treatment and curing as a result of which the crystallinity of the 4BS particles decreases. Another part of the bound water remains in the 4BS particles after curing of the pastes and can leave them only after heating to 250/spl deg/C. The ability of water to leave the particles depends on the density of the semi-suspension used for preparation of the paste. The higher the H/sub 2/O content in the semi-suspension the easier it leaves the 4BS crystals on vacuum treatment. Experimental tests have shown that the best battery performance is obtained when the paste is prepared under the following conditions: degree of lead oxidation in the leady oxide (LO) 85% PbO/LO, H/sub 2/SO/sub 4//LO ratio 5-6%, liquid content (H/sub 2/SO/sub 4/+H/sub 2/O) in tile semi-suspension 240-260 ml/kg LO, temperature of the semi-suspension equal to or higher than 90/spl deg/C, duration of paste mixing about 15 min. The new semi-suspension technology of 4BS paste preparation facilitates the formation of stable PAM structure that ensures high capacity and long cycle life of the positive plates of lead-acid batteries.","PeriodicalId":360008,"journal":{"name":"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-suspension technology for preparation of tetrabasic pastes for positive lead-acid battery plates\",\"authors\":\"D. Pavlov, S. Ruevski\",\"doi\":\"10.1109/BCAA.2001.905125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given, as follows. A new technology for production of 4BS pastes for the positive (lead dioxide) plates of lead-acid batteries has been developed based on an Eirich Evactherm(R) mixer. The basic principle of this new technology is that 4BS crystals with dimensions between 20 and 25 /spl mu/m are formed first from a semi-suspension at a temperature higher than 90/spl deg/C and then the excess water is removed from the semi-suspension under vacuum until the desired paste density is obtained. During the vacuum treatment, the temperature of the paste decreases and small 4BS and PbO crystals are formed. During the paste formation procedure, the large 4BS crystals build up the PbO/sub 2/ skeleton of the PAM, whereas the small crystals form the energetic PbO/sub 2/ structure, which participates in the charge-discharge processes on cycling of the battery. It has been found, through XRD and thermo-gravitational analysis, that the 4BS particles comprise crystal and amorphous zones. The crystal zones contain water molecules part of which can be easily removed from the particles under vacuum treatment and curing as a result of which the crystallinity of the 4BS particles decreases. Another part of the bound water remains in the 4BS particles after curing of the pastes and can leave them only after heating to 250/spl deg/C. The ability of water to leave the particles depends on the density of the semi-suspension used for preparation of the paste. The higher the H/sub 2/O content in the semi-suspension the easier it leaves the 4BS crystals on vacuum treatment. Experimental tests have shown that the best battery performance is obtained when the paste is prepared under the following conditions: degree of lead oxidation in the leady oxide (LO) 85% PbO/LO, H/sub 2/SO/sub 4//LO ratio 5-6%, liquid content (H/sub 2/SO/sub 4/+H/sub 2/O) in tile semi-suspension 240-260 ml/kg LO, temperature of the semi-suspension equal to or higher than 90/spl deg/C, duration of paste mixing about 15 min. The new semi-suspension technology of 4BS paste preparation facilitates the formation of stable PAM structure that ensures high capacity and long cycle life of the positive plates of lead-acid batteries.\",\"PeriodicalId\":360008,\"journal\":{\"name\":\"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCAA.2001.905125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCAA.2001.905125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仅给出摘要形式,如下。基于Eirich Evactherm(R)混合器,开发了一种生产铅酸蓄电池正极(二氧化铅)极板4BS浆料的新技术。这项新技术的基本原理是,首先在高于90/spl℃的温度下从半悬浮液中形成尺寸在20 - 25 /spl mu/m之间的4BS晶体,然后在真空下从半悬浮液中除去多余的水分,直到获得所需的膏体密度。在真空处理过程中,膏体温度降低,形成小的4BS和PbO晶体。在膏体形成过程中,大的4BS晶体形成PAM的PbO/sub - 2/骨架,小的4BS晶体形成具有能量的PbO/sub - 2/结构,参与电池循环过程中的充放电过程。通过XRD和热重分析发现,4BS颗粒分为晶态区和非晶态区。结晶区含有水分子,在真空处理和固化下,部分水分子很容易从颗粒中去除,从而使4BS颗粒的结晶度降低。另一部分结合水在膏体固化后仍留在4BS颗粒中,只有在加热到250℃后才能离开。水离开颗粒的能力取决于用于制备浆料的半悬浮液的密度。半悬浮液中H/sub /O含量越高,真空处理后越容易析出4BS晶体。实验测试表明,在以下条件下制备浆料可获得最佳电池性能:铅氧化度的含铅的氧化物(LO) 85% PbO / LO, H /子2 / /订阅4 / / LO比5 - 6%,液体内容(H /订阅2 / /订阅4 + 2 H /订阅/ O)采集表徵半主动悬挂在瓦240 - 260毫升/公斤,采集表徵半主动悬挂的温度等于或高于90 / spl度/ C,糊搅拌时间约15分钟。新技术使议会一直处于半停顿4 bs粘贴准备有助于形成稳定的PAM结构确保高容量和长循环寿命的积极的铅酸电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-suspension technology for preparation of tetrabasic pastes for positive lead-acid battery plates
Summary form only given, as follows. A new technology for production of 4BS pastes for the positive (lead dioxide) plates of lead-acid batteries has been developed based on an Eirich Evactherm(R) mixer. The basic principle of this new technology is that 4BS crystals with dimensions between 20 and 25 /spl mu/m are formed first from a semi-suspension at a temperature higher than 90/spl deg/C and then the excess water is removed from the semi-suspension under vacuum until the desired paste density is obtained. During the vacuum treatment, the temperature of the paste decreases and small 4BS and PbO crystals are formed. During the paste formation procedure, the large 4BS crystals build up the PbO/sub 2/ skeleton of the PAM, whereas the small crystals form the energetic PbO/sub 2/ structure, which participates in the charge-discharge processes on cycling of the battery. It has been found, through XRD and thermo-gravitational analysis, that the 4BS particles comprise crystal and amorphous zones. The crystal zones contain water molecules part of which can be easily removed from the particles under vacuum treatment and curing as a result of which the crystallinity of the 4BS particles decreases. Another part of the bound water remains in the 4BS particles after curing of the pastes and can leave them only after heating to 250/spl deg/C. The ability of water to leave the particles depends on the density of the semi-suspension used for preparation of the paste. The higher the H/sub 2/O content in the semi-suspension the easier it leaves the 4BS crystals on vacuum treatment. Experimental tests have shown that the best battery performance is obtained when the paste is prepared under the following conditions: degree of lead oxidation in the leady oxide (LO) 85% PbO/LO, H/sub 2/SO/sub 4//LO ratio 5-6%, liquid content (H/sub 2/SO/sub 4/+H/sub 2/O) in tile semi-suspension 240-260 ml/kg LO, temperature of the semi-suspension equal to or higher than 90/spl deg/C, duration of paste mixing about 15 min. The new semi-suspension technology of 4BS paste preparation facilitates the formation of stable PAM structure that ensures high capacity and long cycle life of the positive plates of lead-acid batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信