测试点插入问题的动态规划方法

B. Krishnamurthy
{"title":"测试点插入问题的动态规划方法","authors":"B. Krishnamurthy","doi":"10.1145/37888.38000","DOIUrl":null,"url":null,"abstract":"The test point insertion problem is that of selecting t nodes in a combinational network as candidates for inserting observable test points, so as to minimize the number of test vectors needed to detect all single stuck-at faults in the network. In this paper we describe a dynamic programming approach to selecting the test points and provide an algorithm that inserts the test points optimally for fanout-free networks. We further extend this algorithm to general combinational networks with reconvergent fanout. We also analyze the time complexity of the algorithm and show that it runs in O(n-t) time, where n is the size of the network and t is the number of test points to be inserted. As a side result we show that we can compute minimal test sets for a restricted class of networks that includes fanout. This extends previous results which were limited to fanout-free networks.","PeriodicalId":301552,"journal":{"name":"24th ACM/IEEE Design Automation Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"A Dynamic Programming Approach to the Test Point Insertion Problem\",\"authors\":\"B. Krishnamurthy\",\"doi\":\"10.1145/37888.38000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The test point insertion problem is that of selecting t nodes in a combinational network as candidates for inserting observable test points, so as to minimize the number of test vectors needed to detect all single stuck-at faults in the network. In this paper we describe a dynamic programming approach to selecting the test points and provide an algorithm that inserts the test points optimally for fanout-free networks. We further extend this algorithm to general combinational networks with reconvergent fanout. We also analyze the time complexity of the algorithm and show that it runs in O(n-t) time, where n is the size of the network and t is the number of test points to be inserted. As a side result we show that we can compute minimal test sets for a restricted class of networks that includes fanout. This extends previous results which were limited to fanout-free networks.\",\"PeriodicalId\":301552,\"journal\":{\"name\":\"24th ACM/IEEE Design Automation Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"24th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/37888.38000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"24th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/37888.38000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

测试点插入问题是在组合网络中选择t个节点作为插入可观察测试点的候选节点,以使检测网络中所有单个卡在故障所需的测试向量数量最少。在本文中,我们描述了一种动态规划方法来选择测试点,并提供了一种算法来最优地插入无风扇输出网络的测试点。我们进一步将该算法推广到具有再收敛扇出的一般组合网络。我们还分析了算法的时间复杂度,并表明它在O(n-t)时间内运行,其中n是网络的大小,t是要插入的测试点的数量。作为附带结果,我们表明我们可以为包含扇出的受限网络类计算最小测试集。这扩展了以前仅限于无风扇输出网络的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Programming Approach to the Test Point Insertion Problem
The test point insertion problem is that of selecting t nodes in a combinational network as candidates for inserting observable test points, so as to minimize the number of test vectors needed to detect all single stuck-at faults in the network. In this paper we describe a dynamic programming approach to selecting the test points and provide an algorithm that inserts the test points optimally for fanout-free networks. We further extend this algorithm to general combinational networks with reconvergent fanout. We also analyze the time complexity of the algorithm and show that it runs in O(n-t) time, where n is the size of the network and t is the number of test points to be inserted. As a side result we show that we can compute minimal test sets for a restricted class of networks that includes fanout. This extends previous results which were limited to fanout-free networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信