一个有效的SPC方法来监控半导体制造过程与多个变化源

A. Chen, R. Guo, P.-J. Yeh
{"title":"一个有效的SPC方法来监控半导体制造过程与多个变化源","authors":"A. Chen, R. Guo, P.-J. Yeh","doi":"10.1109/ISSM.2000.993710","DOIUrl":null,"url":null,"abstract":"In this research, we develop an integrated sampling and statistical process control (SPC) strategy for semiconductor processes with multiple variation sources. We first construct a process model to characterize the complex nature of semiconductor processes. Three types of variations: among-site, among-zone and among-batch variations, are considered in the model. Based on this process model and rational sub-grouping techniques, multivariate. T/sup 2/ control charts are then proposed to monitor the process variations. It is shown that the proposed control charts are more effective than conventional charting techniques in detecting various types of process excursions.","PeriodicalId":104122,"journal":{"name":"Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An effective SPC approach to monitoring semiconductor manufacturing processes with multiple variation sources\",\"authors\":\"A. Chen, R. Guo, P.-J. Yeh\",\"doi\":\"10.1109/ISSM.2000.993710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we develop an integrated sampling and statistical process control (SPC) strategy for semiconductor processes with multiple variation sources. We first construct a process model to characterize the complex nature of semiconductor processes. Three types of variations: among-site, among-zone and among-batch variations, are considered in the model. Based on this process model and rational sub-grouping techniques, multivariate. T/sup 2/ control charts are then proposed to monitor the process variations. It is shown that the proposed control charts are more effective than conventional charting techniques in detecting various types of process excursions.\",\"PeriodicalId\":104122,\"journal\":{\"name\":\"Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM.2000.993710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM.2000.993710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本研究中,我们开发了一种集成采样和统计过程控制(SPC)策略,用于具有多个变化源的半导体过程。我们首先构建一个过程模型来表征半导体过程的复杂性。模型中考虑了三种类型的变化:场地间、区域间和批间变化。基于该过程模型和合理的子分组技术,实现了多变量。然后提出T/sup 2/控制图来监视过程变化。结果表明,所提出的控制图在检测各种类型的过程偏差方面比传统的制图技术更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective SPC approach to monitoring semiconductor manufacturing processes with multiple variation sources
In this research, we develop an integrated sampling and statistical process control (SPC) strategy for semiconductor processes with multiple variation sources. We first construct a process model to characterize the complex nature of semiconductor processes. Three types of variations: among-site, among-zone and among-batch variations, are considered in the model. Based on this process model and rational sub-grouping techniques, multivariate. T/sup 2/ control charts are then proposed to monitor the process variations. It is shown that the proposed control charts are more effective than conventional charting techniques in detecting various types of process excursions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信