揭开数据驱动和可调时钟方案的神秘面纱

R. Mullins, S. Moore
{"title":"揭开数据驱动和可调时钟方案的神秘面纱","authors":"R. Mullins, S. Moore","doi":"10.1109/ASYNC.2007.15","DOIUrl":null,"url":null,"abstract":"VLSI systems are often constructed from a multitude of independently clocked synchronous IP blocks. Unfortunately, while a synchronous design style may produce efficient block level implementations it does little to support their composition. The addition of asynchronous interfaces to each synchronous block is one way to simplify and strengthen their integration. Asynchronous interfaces allow blocks to be composed without the need to consider synchronisation failure rates, permit data-driven operation and provide greater freedom when designing on-chip buses and networks. This paper surveys the significant body of published work in this area. We highlight similarities between schemes that are often concealed by differences in specification or circuit style. We also present new local clock implementations and provide solutions to mitigate the effect of clock-tree insertion delays. The ultimate goal of this work is to permit multi-clock synchronous systems to be composed simply, robustly and efficiently.","PeriodicalId":136595,"journal":{"name":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Demystifying Data-Driven and Pausible Clocking Schemes\",\"authors\":\"R. Mullins, S. Moore\",\"doi\":\"10.1109/ASYNC.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VLSI systems are often constructed from a multitude of independently clocked synchronous IP blocks. Unfortunately, while a synchronous design style may produce efficient block level implementations it does little to support their composition. The addition of asynchronous interfaces to each synchronous block is one way to simplify and strengthen their integration. Asynchronous interfaces allow blocks to be composed without the need to consider synchronisation failure rates, permit data-driven operation and provide greater freedom when designing on-chip buses and networks. This paper surveys the significant body of published work in this area. We highlight similarities between schemes that are often concealed by differences in specification or circuit style. We also present new local clock implementations and provide solutions to mitigate the effect of clock-tree insertion delays. The ultimate goal of this work is to permit multi-clock synchronous systems to be composed simply, robustly and efficiently.\",\"PeriodicalId\":136595,\"journal\":{\"name\":\"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

VLSI系统通常由许多独立时钟同步IP块构成。不幸的是,虽然同步设计风格可能会产生高效的块级实现,但它几乎不支持它们的组合。向每个同步块添加异步接口是简化和加强其集成的一种方法。异步接口允许在不需要考虑同步故障率的情况下组成块,允许数据驱动操作,并在设计片上总线和网络时提供更大的自由度。本文综述了这一领域已发表的重要著作。我们强调方案之间的相似之处,这些相似之处往往被规格或电路风格的差异所掩盖。我们还提出了新的本地时钟实现,并提供了减轻时钟树插入延迟影响的解决方案。这项工作的最终目标是允许多时钟同步系统组成简单,健壮和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demystifying Data-Driven and Pausible Clocking Schemes
VLSI systems are often constructed from a multitude of independently clocked synchronous IP blocks. Unfortunately, while a synchronous design style may produce efficient block level implementations it does little to support their composition. The addition of asynchronous interfaces to each synchronous block is one way to simplify and strengthen their integration. Asynchronous interfaces allow blocks to be composed without the need to consider synchronisation failure rates, permit data-driven operation and provide greater freedom when designing on-chip buses and networks. This paper surveys the significant body of published work in this area. We highlight similarities between schemes that are often concealed by differences in specification or circuit style. We also present new local clock implementations and provide solutions to mitigate the effect of clock-tree insertion delays. The ultimate goal of this work is to permit multi-clock synchronous systems to be composed simply, robustly and efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信