Muhammad Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Jamshed Nasir
{"title":"涉及指数型凸函数的若干积分不等式及其应用","authors":"Muhammad Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Jamshed Nasir","doi":"10.48185/jmam.v2i3.330","DOIUrl":null,"url":null,"abstract":"In this present case, we focus and explore the idea of a new family of convex function namely exponentialtype m–convex functions. To support this newly introduced idea, we elaborate some of its nice algebraicproperties. Employing this, we investigate the novel version of Hermite–Hadamard type integral inequality.Furthermore, to enhance the paper, we present several new refinements of Hermite–Hadamard (H−H) inequality.Further, in the manner of this newly introduced idea, we investigate some applications of specialmeans. These new results yield us some generalizations of the prior results in the literature. We believe, themethodology investigated in this paper will further inspire intrigued researchers.","PeriodicalId":393347,"journal":{"name":"Journal of Mathematical Analysis and Modeling","volume":"109 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Integral Inequalities Involving Exponential Type Convex Functions and Applications\",\"authors\":\"Muhammad Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Jamshed Nasir\",\"doi\":\"10.48185/jmam.v2i3.330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this present case, we focus and explore the idea of a new family of convex function namely exponentialtype m–convex functions. To support this newly introduced idea, we elaborate some of its nice algebraicproperties. Employing this, we investigate the novel version of Hermite–Hadamard type integral inequality.Furthermore, to enhance the paper, we present several new refinements of Hermite–Hadamard (H−H) inequality.Further, in the manner of this newly introduced idea, we investigate some applications of specialmeans. These new results yield us some generalizations of the prior results in the literature. We believe, themethodology investigated in this paper will further inspire intrigued researchers.\",\"PeriodicalId\":393347,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Modeling\",\"volume\":\"109 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48185/jmam.v2i3.330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48185/jmam.v2i3.330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some Integral Inequalities Involving Exponential Type Convex Functions and Applications
In this present case, we focus and explore the idea of a new family of convex function namely exponentialtype m–convex functions. To support this newly introduced idea, we elaborate some of its nice algebraicproperties. Employing this, we investigate the novel version of Hermite–Hadamard type integral inequality.Furthermore, to enhance the paper, we present several new refinements of Hermite–Hadamard (H−H) inequality.Further, in the manner of this newly introduced idea, we investigate some applications of specialmeans. These new results yield us some generalizations of the prior results in the literature. We believe, themethodology investigated in this paper will further inspire intrigued researchers.