基于变加权bsvd的隐私保护协同过滤

Jue Wu, Lei Yang, Zhihui Li
{"title":"基于变加权bsvd的隐私保护协同过滤","authors":"Jue Wu, Lei Yang, Zhihui Li","doi":"10.1109/ISKE.2015.25","DOIUrl":null,"url":null,"abstract":"Recommender systems typically use collaborative filtering to make sense of huge and growing volumes of data. However, sharing user-item preferential data for use in collaborative filtering poses significant privacy and security challenges. In recent years, privacy has attracted a lot of attention. There are many existing works on privacy-preserving collaborative filtering. However, while these schemes are theoretically feasible, there are many practical implementation difficulties on real world. In this paper, a privacy-preserving collaborative filtering algorithm based on weighted singular value decomposition is proposed. The users' needs are considered in the algorithm, and the user can disturb their original data with different weights according to their needs. At the privacy-preserving stage, the variable weighted-based BSVD scheme is used to protect the data privacy. At the prediction stage, the improved Slope One algorithm is used to get the prediction. Some experiments are performed using the proposed algorithm. The results indicate a good performance of the scheme in comparison with the Slope One algorithm. Meanwhile, it is shown that the algorithm can preserve the data privacy efficiently with high data usability.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Variable Weighted BSVD-Based Privacy-Preserving Collaborative Filtering\",\"authors\":\"Jue Wu, Lei Yang, Zhihui Li\",\"doi\":\"10.1109/ISKE.2015.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems typically use collaborative filtering to make sense of huge and growing volumes of data. However, sharing user-item preferential data for use in collaborative filtering poses significant privacy and security challenges. In recent years, privacy has attracted a lot of attention. There are many existing works on privacy-preserving collaborative filtering. However, while these schemes are theoretically feasible, there are many practical implementation difficulties on real world. In this paper, a privacy-preserving collaborative filtering algorithm based on weighted singular value decomposition is proposed. The users' needs are considered in the algorithm, and the user can disturb their original data with different weights according to their needs. At the privacy-preserving stage, the variable weighted-based BSVD scheme is used to protect the data privacy. At the prediction stage, the improved Slope One algorithm is used to get the prediction. Some experiments are performed using the proposed algorithm. The results indicate a good performance of the scheme in comparison with the Slope One algorithm. Meanwhile, it is shown that the algorithm can preserve the data privacy efficiently with high data usability.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

推荐系统通常使用协同过滤来理解庞大且不断增长的数据量。然而,共享用户项优先数据用于协同过滤带来了重大的隐私和安全挑战。近年来,隐私问题引起了人们的广泛关注。在保护隐私的协同过滤方面,已有很多研究成果。然而,虽然这些方案在理论上是可行的,但在现实世界中存在许多实际实施困难。提出了一种基于加权奇异值分解的隐私保护协同过滤算法。该算法考虑了用户的需求,用户可以根据需要对自己的原始数据进行不同权重的扰动。在隐私保护阶段,采用基于变权的BSVD方案对数据隐私进行保护。在预测阶段,采用改进的Slope One算法进行预测。利用该算法进行了一些实验。结果表明,与Slope One算法相比,该方案具有良好的性能。同时,该算法能够有效地保护数据隐私,具有较高的数据可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Weighted BSVD-Based Privacy-Preserving Collaborative Filtering
Recommender systems typically use collaborative filtering to make sense of huge and growing volumes of data. However, sharing user-item preferential data for use in collaborative filtering poses significant privacy and security challenges. In recent years, privacy has attracted a lot of attention. There are many existing works on privacy-preserving collaborative filtering. However, while these schemes are theoretically feasible, there are many practical implementation difficulties on real world. In this paper, a privacy-preserving collaborative filtering algorithm based on weighted singular value decomposition is proposed. The users' needs are considered in the algorithm, and the user can disturb their original data with different weights according to their needs. At the privacy-preserving stage, the variable weighted-based BSVD scheme is used to protect the data privacy. At the prediction stage, the improved Slope One algorithm is used to get the prediction. Some experiments are performed using the proposed algorithm. The results indicate a good performance of the scheme in comparison with the Slope One algorithm. Meanwhile, it is shown that the algorithm can preserve the data privacy efficiently with high data usability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信