M. Anisetti, V. Bellandi, E. Damiani, Gwanggil Jeon, Jechang Jeong
{"title":"人机视觉交互的适应性体系结构","authors":"M. Anisetti, V. Bellandi, E. Damiani, Gwanggil Jeon, Jechang Jeong","doi":"10.1109/IECON.2007.4460411","DOIUrl":null,"url":null,"abstract":"Face recognition has received increasing attention during the past decade as one of the most promising applications of image analysis and processing. One emerging application field is Human-Machine Interaction involving robotic vision. For many applications in this field (including face identification and expression recognition) the precision of facial feature detection and the computational burden are both critical issues. This paper presents a completely tunable hybrid method for accurate face localization based on a quick-and-dirty preliminary detection followed by a 2D tracking. Our technique guarantees complete control over the performance/result quality ratio and can be successfully applied to intelligent robotic vision. We use our approach to design a Robotic Vision Architecture capable of selecting from a set of strategies to obtain the best results.","PeriodicalId":199609,"journal":{"name":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Adaptable Architecture for Human-Robot Visual Interaction\",\"authors\":\"M. Anisetti, V. Bellandi, E. Damiani, Gwanggil Jeon, Jechang Jeong\",\"doi\":\"10.1109/IECON.2007.4460411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition has received increasing attention during the past decade as one of the most promising applications of image analysis and processing. One emerging application field is Human-Machine Interaction involving robotic vision. For many applications in this field (including face identification and expression recognition) the precision of facial feature detection and the computational burden are both critical issues. This paper presents a completely tunable hybrid method for accurate face localization based on a quick-and-dirty preliminary detection followed by a 2D tracking. Our technique guarantees complete control over the performance/result quality ratio and can be successfully applied to intelligent robotic vision. We use our approach to design a Robotic Vision Architecture capable of selecting from a set of strategies to obtain the best results.\",\"PeriodicalId\":199609,\"journal\":{\"name\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2007.4460411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2007.4460411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptable Architecture for Human-Robot Visual Interaction
Face recognition has received increasing attention during the past decade as one of the most promising applications of image analysis and processing. One emerging application field is Human-Machine Interaction involving robotic vision. For many applications in this field (including face identification and expression recognition) the precision of facial feature detection and the computational burden are both critical issues. This paper presents a completely tunable hybrid method for accurate face localization based on a quick-and-dirty preliminary detection followed by a 2D tracking. Our technique guarantees complete control over the performance/result quality ratio and can be successfully applied to intelligent robotic vision. We use our approach to design a Robotic Vision Architecture capable of selecting from a set of strategies to obtain the best results.