学习飞行RL:基于强化学习的可扩展城市空中交通避碰

Kuk Jin Jang, Y. Pant, Alena Rodionova, R. Mangharam
{"title":"学习飞行RL:基于强化学习的可扩展城市空中交通避碰","authors":"Kuk Jin Jang, Y. Pant, Alena Rodionova, R. Mangharam","doi":"10.1109/DASC50938.2020.9256710","DOIUrl":null,"url":null,"abstract":"As hundreds of Unmanned Aircraft System (UAS) operate within urban airspaces, automated and decentralized UAS traffic management (UTM) will be critical to maintain safe and efficient operations. In this work, we present Learning-to-Fly with Reinforcement Learning (L2F-RL), a decentralized, on-demand Collision Avoidance (CA) framework that systematically combines machine learning with cooperative model predictive control for UAS collision avoidance while retaining satisfaction of higher-level mission objectives. L2F-RL consists of: 1) RL-based policy for conflict resolution (CR) with discrete-decision making, 2) decentralized, cooperative model predictive control for CA. To accelerate training with RL, we utilize reward shaping and curriculum learning. Our approach outperforms baseline approaches with a 99.10% separation rate (ratio of success to total test cases) in the worst case, improving to 100% in the best case with a 1000X improvement in computation time compared to centralized methods. Our results demonstrate the potential of combining learning approaches with optimization-based control, making it a significant contribution towards scalable, decentralized UTM.","PeriodicalId":112045,"journal":{"name":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-to-Fly RL: Reinforcement Learning-based Collision Avoidance for Scalable Urban Air Mobility\",\"authors\":\"Kuk Jin Jang, Y. Pant, Alena Rodionova, R. Mangharam\",\"doi\":\"10.1109/DASC50938.2020.9256710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As hundreds of Unmanned Aircraft System (UAS) operate within urban airspaces, automated and decentralized UAS traffic management (UTM) will be critical to maintain safe and efficient operations. In this work, we present Learning-to-Fly with Reinforcement Learning (L2F-RL), a decentralized, on-demand Collision Avoidance (CA) framework that systematically combines machine learning with cooperative model predictive control for UAS collision avoidance while retaining satisfaction of higher-level mission objectives. L2F-RL consists of: 1) RL-based policy for conflict resolution (CR) with discrete-decision making, 2) decentralized, cooperative model predictive control for CA. To accelerate training with RL, we utilize reward shaping and curriculum learning. Our approach outperforms baseline approaches with a 99.10% separation rate (ratio of success to total test cases) in the worst case, improving to 100% in the best case with a 1000X improvement in computation time compared to centralized methods. Our results demonstrate the potential of combining learning approaches with optimization-based control, making it a significant contribution towards scalable, decentralized UTM.\",\"PeriodicalId\":112045,\"journal\":{\"name\":\"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC50938.2020.9256710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC50938.2020.9256710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数百架无人机系统(UAS)在城市空域内运行,自动化和分散的UAS交通管理(UTM)对于保持安全和高效的运行至关重要。在这项工作中,我们提出了一种基于强化学习的学习飞行(L2F-RL),这是一种分散的按需避碰(CA)框架,该框架系统地将机器学习与协作模型预测控制相结合,用于UAS避碰,同时保持对更高级别任务目标的满意度。L2F-RL包括:1)基于RL的离散决策冲突解决(CR)策略,2)CA的分散、合作模型预测控制。为了加速RL训练,我们利用奖励塑造和课程学习。我们的方法在最坏的情况下以99.10%的分离率(成功与总测试用例的比率)优于基线方法,在最好的情况下提高到100%,与集中式方法相比,计算时间提高了1000倍。我们的研究结果证明了将学习方法与基于优化的控制相结合的潜力,使其对可扩展的、分散的UTM做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-to-Fly RL: Reinforcement Learning-based Collision Avoidance for Scalable Urban Air Mobility
As hundreds of Unmanned Aircraft System (UAS) operate within urban airspaces, automated and decentralized UAS traffic management (UTM) will be critical to maintain safe and efficient operations. In this work, we present Learning-to-Fly with Reinforcement Learning (L2F-RL), a decentralized, on-demand Collision Avoidance (CA) framework that systematically combines machine learning with cooperative model predictive control for UAS collision avoidance while retaining satisfaction of higher-level mission objectives. L2F-RL consists of: 1) RL-based policy for conflict resolution (CR) with discrete-decision making, 2) decentralized, cooperative model predictive control for CA. To accelerate training with RL, we utilize reward shaping and curriculum learning. Our approach outperforms baseline approaches with a 99.10% separation rate (ratio of success to total test cases) in the worst case, improving to 100% in the best case with a 1000X improvement in computation time compared to centralized methods. Our results demonstrate the potential of combining learning approaches with optimization-based control, making it a significant contribution towards scalable, decentralized UTM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信