Shifeng Zhao, C. Yao, Meng-liang Yao, Yuewen Mu, J. Wan, Guang-hou Wang
{"title":"低能簇束沉积压电/压磁薄膜异质结构的磁电响应分析","authors":"Shifeng Zhao, C. Yao, Meng-liang Yao, Yuewen Mu, J. Wan, Guang-hou Wang","doi":"10.1109/SPAWDA.2008.4775748","DOIUrl":null,"url":null,"abstract":"The piezoelectric/piezomagnetic thin-film heterostructure has been prepared by using low energy cluster beam to deposit Tb-Fe clusters onto the Pb(Zr0.52Ti0.48)O3 (PZT) film substrate. The magnetoelectric voltage coefficient of the heterostructure is larger than that of the reported all-oxide ferroelectric-ferromagnetic composite film. A magnetic-mechanical-electronic transformation model is designed to deeply investigate the origin of the giant magnetoelectric effect. And the coupling coefficient k between the piezoelectric and piezomagnetic phase is introduced into this model to analysis the magnetoelectric response of the heterostructure. It is found that the coupling coefficient k plays a key pole in the production of the magnetoelectric effect for piezoelectric/piezomagnetic thin-film heterostructure. This work describes an ideal way to optimize the magnetoelectric effect of the piezoelectric/piezomagnetic thin-film heterostructure and facilitates their applications in MEMS devices.","PeriodicalId":190941,"journal":{"name":"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetoelectric response analysis of the piezoelectric/piezomagnetic thin-film heterostructure derived by low energy cluster beam deposition\",\"authors\":\"Shifeng Zhao, C. Yao, Meng-liang Yao, Yuewen Mu, J. Wan, Guang-hou Wang\",\"doi\":\"10.1109/SPAWDA.2008.4775748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The piezoelectric/piezomagnetic thin-film heterostructure has been prepared by using low energy cluster beam to deposit Tb-Fe clusters onto the Pb(Zr0.52Ti0.48)O3 (PZT) film substrate. The magnetoelectric voltage coefficient of the heterostructure is larger than that of the reported all-oxide ferroelectric-ferromagnetic composite film. A magnetic-mechanical-electronic transformation model is designed to deeply investigate the origin of the giant magnetoelectric effect. And the coupling coefficient k between the piezoelectric and piezomagnetic phase is introduced into this model to analysis the magnetoelectric response of the heterostructure. It is found that the coupling coefficient k plays a key pole in the production of the magnetoelectric effect for piezoelectric/piezomagnetic thin-film heterostructure. This work describes an ideal way to optimize the magnetoelectric effect of the piezoelectric/piezomagnetic thin-film heterostructure and facilitates their applications in MEMS devices.\",\"PeriodicalId\":190941,\"journal\":{\"name\":\"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWDA.2008.4775748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA.2008.4775748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoelectric response analysis of the piezoelectric/piezomagnetic thin-film heterostructure derived by low energy cluster beam deposition
The piezoelectric/piezomagnetic thin-film heterostructure has been prepared by using low energy cluster beam to deposit Tb-Fe clusters onto the Pb(Zr0.52Ti0.48)O3 (PZT) film substrate. The magnetoelectric voltage coefficient of the heterostructure is larger than that of the reported all-oxide ferroelectric-ferromagnetic composite film. A magnetic-mechanical-electronic transformation model is designed to deeply investigate the origin of the giant magnetoelectric effect. And the coupling coefficient k between the piezoelectric and piezomagnetic phase is introduced into this model to analysis the magnetoelectric response of the heterostructure. It is found that the coupling coefficient k plays a key pole in the production of the magnetoelectric effect for piezoelectric/piezomagnetic thin-film heterostructure. This work describes an ideal way to optimize the magnetoelectric effect of the piezoelectric/piezomagnetic thin-film heterostructure and facilitates their applications in MEMS devices.