环境传感器数据的可视化统计分析

Bindu Gupta, Kaushal Paneri, Gunjan Sehgal, Karamjit Singh, Geetika Sharma, Gautam M. Shroff
{"title":"环境传感器数据的可视化统计分析","authors":"Bindu Gupta, Kaushal Paneri, Gunjan Sehgal, Karamjit Singh, Geetika Sharma, Gautam M. Shroff","doi":"10.1109/VAST.2017.8585515","DOIUrl":null,"url":null,"abstract":"We attempted the VAST MC2 challenge following a statistical modelling approach along with interactive visualizations to analyse and extract insights from the data. We use Bayesian networks to model dependencies between given and derived data attributes along with visual analytics techniques to answer the questions posed by the challenge.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Statistical Analysis of Environmental Sensor Data\",\"authors\":\"Bindu Gupta, Kaushal Paneri, Gunjan Sehgal, Karamjit Singh, Geetika Sharma, Gautam M. Shroff\",\"doi\":\"10.1109/VAST.2017.8585515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attempted the VAST MC2 challenge following a statistical modelling approach along with interactive visualizations to analyse and extract insights from the data. We use Bayesian networks to model dependencies between given and derived data attributes along with visual analytics techniques to answer the questions posed by the challenge.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们尝试了VAST MC2挑战,采用统计建模方法以及交互式可视化来分析和提取数据中的见解。我们使用贝叶斯网络来模拟给定和派生数据属性之间的依赖关系,以及视觉分析技术来回答挑战所提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Statistical Analysis of Environmental Sensor Data
We attempted the VAST MC2 challenge following a statistical modelling approach along with interactive visualizations to analyse and extract insights from the data. We use Bayesian networks to model dependencies between given and derived data attributes along with visual analytics techniques to answer the questions posed by the challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信