强无干扰和有型高阶掩模

G. Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, B. Grégoire, Pierre-Yves Strub, Rébecca Zucchini
{"title":"强无干扰和有型高阶掩模","authors":"G. Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, B. Grégoire, Pierre-Yves Strub, Rébecca Zucchini","doi":"10.1145/2976749.2978427","DOIUrl":null,"url":null,"abstract":"Differential power analysis (DPA) is a side-channel attack in which an adversary retrieves cryptographic material by measuring and analyzing the power consumption of the device on which the cryptographic algorithm under attack executes. An effective countermeasure against DPA is to mask secrets by probabilistically encoding them over a set of shares, and to run masked algorithms that compute on these encodings. Masked algorithms are often expected to provide, at least, a certain level of probing security. Leveraging the deep connections between probabilistic information flow and probing security, we develop a precise, scalable, and fully automated methodology to verify the probing security of masked algorithms, and generate them from unprotected descriptions of the algorithm. Our methodology relies on several contributions of independent interest, including a stronger notion of probing security that supports compositional reasoning, and a type system for enforcing an expressive class of probing policies. Finally, we validate our methodology on examples that go significantly beyond the state-of-the-art.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":"{\"title\":\"Strong Non-Interference and Type-Directed Higher-Order Masking\",\"authors\":\"G. Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, B. Grégoire, Pierre-Yves Strub, Rébecca Zucchini\",\"doi\":\"10.1145/2976749.2978427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential power analysis (DPA) is a side-channel attack in which an adversary retrieves cryptographic material by measuring and analyzing the power consumption of the device on which the cryptographic algorithm under attack executes. An effective countermeasure against DPA is to mask secrets by probabilistically encoding them over a set of shares, and to run masked algorithms that compute on these encodings. Masked algorithms are often expected to provide, at least, a certain level of probing security. Leveraging the deep connections between probabilistic information flow and probing security, we develop a precise, scalable, and fully automated methodology to verify the probing security of masked algorithms, and generate them from unprotected descriptions of the algorithm. Our methodology relies on several contributions of independent interest, including a stronger notion of probing security that supports compositional reasoning, and a type system for enforcing an expressive class of probing policies. Finally, we validate our methodology on examples that go significantly beyond the state-of-the-art.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"211\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 211

摘要

差分功率分析(DPA)是一种侧信道攻击,攻击者通过测量和分析执行加密算法的设备的功耗来检索加密材料。针对DPA的有效对策是通过在一组共享上对秘密进行概率编码来屏蔽秘密,并运行基于这些编码进行计算的屏蔽算法。掩码算法通常被期望至少提供一定程度的探测安全性。利用概率信息流和探测安全性之间的深层联系,我们开发了一种精确的、可扩展的、全自动的方法来验证掩码算法的探测安全性,并从未受保护的算法描述中生成它们。我们的方法依赖于独立兴趣的几个贡献,包括支持组合推理的更强的探测安全概念,以及用于执行探测策略的表达类的类型系统。最后,我们通过实例验证了我们的方法,这些例子远远超出了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Non-Interference and Type-Directed Higher-Order Masking
Differential power analysis (DPA) is a side-channel attack in which an adversary retrieves cryptographic material by measuring and analyzing the power consumption of the device on which the cryptographic algorithm under attack executes. An effective countermeasure against DPA is to mask secrets by probabilistically encoding them over a set of shares, and to run masked algorithms that compute on these encodings. Masked algorithms are often expected to provide, at least, a certain level of probing security. Leveraging the deep connections between probabilistic information flow and probing security, we develop a precise, scalable, and fully automated methodology to verify the probing security of masked algorithms, and generate them from unprotected descriptions of the algorithm. Our methodology relies on several contributions of independent interest, including a stronger notion of probing security that supports compositional reasoning, and a type system for enforcing an expressive class of probing policies. Finally, we validate our methodology on examples that go significantly beyond the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信