基于四元数神经网络主成分分析的彩色图像压缩

Lincong Luo, Hao Feng, Lijun Ding
{"title":"基于四元数神经网络主成分分析的彩色图像压缩","authors":"Lincong Luo, Hao Feng, Lijun Ding","doi":"10.1109/ICMULT.2010.5631456","DOIUrl":null,"url":null,"abstract":"A color image compression algorithm based on quaternion neural network approach is proposed. The original RGB based color image of Lena can be firstly modeled as pure imaginary quaternion matrix, i.e. any pixel of R,G,B corresponding to the I,J,K imaginary axis , to ensure the integrity of pixel in the computation. The obtained quaternion matrix can be split up into 8×8 sub-blocks and vector quantization to make up of a new sample set. This sample set then is used to train the quaternion neural network adopting quaternion Generalized Hebbian Algorithm (QGHA), acquiring a quaternion weight coefficient that can get the principal components (PCs), the weight can be used to compress and reconstruct the image. Experimental results show the proposed algorithm is effective, the weight trained from image of Lena is successfully used to other images' compression and reconstruction.","PeriodicalId":412601,"journal":{"name":"2010 International Conference on Multimedia Technology","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Color Image Compression Based on Quaternion Neural Network Principal Component Analysis\",\"authors\":\"Lincong Luo, Hao Feng, Lijun Ding\",\"doi\":\"10.1109/ICMULT.2010.5631456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A color image compression algorithm based on quaternion neural network approach is proposed. The original RGB based color image of Lena can be firstly modeled as pure imaginary quaternion matrix, i.e. any pixel of R,G,B corresponding to the I,J,K imaginary axis , to ensure the integrity of pixel in the computation. The obtained quaternion matrix can be split up into 8×8 sub-blocks and vector quantization to make up of a new sample set. This sample set then is used to train the quaternion neural network adopting quaternion Generalized Hebbian Algorithm (QGHA), acquiring a quaternion weight coefficient that can get the principal components (PCs), the weight can be used to compress and reconstruct the image. Experimental results show the proposed algorithm is effective, the weight trained from image of Lena is successfully used to other images' compression and reconstruction.\",\"PeriodicalId\":412601,\"journal\":{\"name\":\"2010 International Conference on Multimedia Technology\",\"volume\":\"516 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Multimedia Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMULT.2010.5631456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMULT.2010.5631456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种基于四元数神经网络的彩色图像压缩算法。Lena基于RGB的原始彩色图像可以首先建模为纯虚四元数矩阵,即R、G、B中对应于I、J、K虚轴的任意像素,以保证计算中像素的完整性。得到的四元数矩阵可以分成8×8子块和矢量量化组成一个新的样本集。该样本集采用四元数广义赫比算法(QGHA)对四元数神经网络进行训练,得到一个四元数权重系数,得到主成分(PCs),该权重可用于图像压缩重构。实验结果表明,该算法是有效的,从Lena图像中训练出的权值可以成功地用于其他图像的压缩和重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Image Compression Based on Quaternion Neural Network Principal Component Analysis
A color image compression algorithm based on quaternion neural network approach is proposed. The original RGB based color image of Lena can be firstly modeled as pure imaginary quaternion matrix, i.e. any pixel of R,G,B corresponding to the I,J,K imaginary axis , to ensure the integrity of pixel in the computation. The obtained quaternion matrix can be split up into 8×8 sub-blocks and vector quantization to make up of a new sample set. This sample set then is used to train the quaternion neural network adopting quaternion Generalized Hebbian Algorithm (QGHA), acquiring a quaternion weight coefficient that can get the principal components (PCs), the weight can be used to compress and reconstruct the image. Experimental results show the proposed algorithm is effective, the weight trained from image of Lena is successfully used to other images' compression and reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信