通过缓存负载/存储队列减少数据缓存能耗

D. Nicolaescu, A. Veidenbaum, A. Nicolau
{"title":"通过缓存负载/存储队列减少数据缓存能耗","authors":"D. Nicolaescu, A. Veidenbaum, A. Nicolau","doi":"10.1145/871506.871569","DOIUrl":null,"url":null,"abstract":"High-performance processors use a large set-associative L1 data cache with multiple ports. As clock speeds and size increase such a cache consumes a significant percentage of the total processor energy. This paper proposes a method of saving energy by reducing the number of data cache accesses. It does so by modifying the load/store queue design to allow \"caching\" of previously accessed data values on both loads and stores after the corresponding memory access instruction has been committed. It is shown that a 32 entry modified LSQ design allows an average of 38.5% of the loads in the SpecINT95 benchmarks and 18.9% in the SpecFP95 benchmarks to get their data from the LSQ. The reduction in the number of Ll cache accesses results in up to a 40% reduction in the L1 data cache energy consumption and in an up to a 16% improvement in the energy-delay product while requiring almost no additional hardware or complex control logic.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Reducing data cache energy consumption via cached load/store queue\",\"authors\":\"D. Nicolaescu, A. Veidenbaum, A. Nicolau\",\"doi\":\"10.1145/871506.871569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance processors use a large set-associative L1 data cache with multiple ports. As clock speeds and size increase such a cache consumes a significant percentage of the total processor energy. This paper proposes a method of saving energy by reducing the number of data cache accesses. It does so by modifying the load/store queue design to allow \\\"caching\\\" of previously accessed data values on both loads and stores after the corresponding memory access instruction has been committed. It is shown that a 32 entry modified LSQ design allows an average of 38.5% of the loads in the SpecINT95 benchmarks and 18.9% in the SpecFP95 benchmarks to get their data from the LSQ. The reduction in the number of Ll cache accesses results in up to a 40% reduction in the L1 data cache energy consumption and in an up to a 16% improvement in the energy-delay product while requiring almost no additional hardware or complex control logic.\",\"PeriodicalId\":355883,\"journal\":{\"name\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/871506.871569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

高性能处理器使用具有多个端口的大型集关联L1数据缓存。随着时钟速度和大小的增加,这样的缓存会消耗处理器总能量的很大一部分。本文提出了一种通过减少数据缓存访问次数来节约能源的方法。它通过修改加载/存储队列设计来实现这一点,以便在提交相应的内存访问指令后,允许在加载和存储上“缓存”先前访问的数据值。结果表明,32项修改后的LSQ设计允许SpecINT95基准测试中平均38.5%的负载和SpecFP95基准测试中18.9%的负载从LSQ获取数据。l缓存访问次数的减少导致L1数据缓存能耗降低40%,能量延迟产品提高16%,同时几乎不需要额外的硬件或复杂的控制逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing data cache energy consumption via cached load/store queue
High-performance processors use a large set-associative L1 data cache with multiple ports. As clock speeds and size increase such a cache consumes a significant percentage of the total processor energy. This paper proposes a method of saving energy by reducing the number of data cache accesses. It does so by modifying the load/store queue design to allow "caching" of previously accessed data values on both loads and stores after the corresponding memory access instruction has been committed. It is shown that a 32 entry modified LSQ design allows an average of 38.5% of the loads in the SpecINT95 benchmarks and 18.9% in the SpecFP95 benchmarks to get their data from the LSQ. The reduction in the number of Ll cache accesses results in up to a 40% reduction in the L1 data cache energy consumption and in an up to a 16% improvement in the energy-delay product while requiring almost no additional hardware or complex control logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信