基于二元高斯混合模型估计的ml热传感器标定

W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang
{"title":"基于二元高斯混合模型估计的ml热传感器标定","authors":"W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang","doi":"10.1109/SOCC46988.2019.1570561880","DOIUrl":null,"url":null,"abstract":"This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-based Thermal Sensor Calibration by Bivariate Gaussian Mixture Model Estimation\",\"authors\":\"W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang\",\"doi\":\"10.1109/SOCC46988.2019.1570561880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.\",\"PeriodicalId\":253998,\"journal\":{\"name\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC46988.2019.1570561880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570561880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于机器学习的后信号处理方法来校准热传感器。结果表明,该校准方案不受环境干扰,能够满足人体温度测量的高分辨率要求。所述感测模块包括两个电阻感测电路,一个用于感测外部温度,另一个用于感测模具内部温度。通过使用这两个热输出,我们训练了多个温度区间的二维多元高斯模型。通过基于概率的估计可以获得更高的精度。仿真结果表明,即使在噪声环境下,该方法也具有较高的精度。该算法在UMC 0.18m CMOS-MEMS技术上实现和制作。传感器芯片在嵌入式系统(ARM V2M-MPS2)上进行了测试。测量结果表明,所提出的方法可以有效地将精度从1℃提高到0.1℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-based Thermal Sensor Calibration by Bivariate Gaussian Mixture Model Estimation
This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信