W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang
{"title":"基于二元高斯混合模型估计的ml热传感器标定","authors":"W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang","doi":"10.1109/SOCC46988.2019.1570561880","DOIUrl":null,"url":null,"abstract":"This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-based Thermal Sensor Calibration by Bivariate Gaussian Mixture Model Estimation\",\"authors\":\"W. Kuo, Li-Wei Liu, Yen-Chin Liao, Hsie-Chia Chang\",\"doi\":\"10.1109/SOCC46988.2019.1570561880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.\",\"PeriodicalId\":253998,\"journal\":{\"name\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC46988.2019.1570561880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570561880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ML-based Thermal Sensor Calibration by Bivariate Gaussian Mixture Model Estimation
This paper presents a machine-learning-based post signal processing to calibrate thermal sensors. The proposed calibration scheme is shown to be immune to the interference from the environment and fulfills the high-resolution requirements of human body temperature measurements. The sensing module comprises two resistive sensing circuits, one is for sensing the external temperature, and the other is for sensing the internal die temperature. By using these two thermal outputs, we trained two-dimensional multivariate Gaussian models for several temperature intervals. Higher accuracy can be obtained via the probability-based estimation. The simulation results show high accuracy even in a noisy environment. The proposed algorithm is implemented and fabricated in UMC 0.18m CMOS-MEMS technology. The sensor chip is tested by an embedded system (ARM V2M-MPS2). The measurement results show that the proposed method can effectively improve the accuracy from 1 degree Celsius to 0.1 degree Celsius.