A. Mironov, D. Sievers, Jinhong Kim, Sung-Jin Park, J. Eden
{"title":"基于平面准分子灯的172nm光消融光刻技术(会议报告)","authors":"A. Mironov, D. Sievers, Jinhong Kim, Sung-Jin Park, J. Eden","doi":"10.1117/12.2529538","DOIUrl":null,"url":null,"abstract":"Photolithographic techniques capable of producing sub-micron scale features typically involve laser or electron beam sources and chemical development of an exposed photoresist. We report here a novel, low cost photolithographic process utilizing flat, efficient lamps emitting at 172 nm. Recently developed 10 cm x 10 cm lamps, for example, produce more than 25 W of average power at 172 nm which enables the precise and fast patterning of most polymers, including those normally employed as e-beam resists and photoresists. Recent experiments demonstrate that PMMA films less than 100 nm in thickness are patterned in less than 20 s through a contact mask with high contrast resolution of 500 nm features. The ultimate resolution limit is expected to be ≤ 300 nm for a contact method. Electroplating technique was further used to deposit 500 nm gold features on a silicon substrate. The reported process does not require a photoresist development step and is performed in nitrogen atmosphere at atmospheric pressure which make it fast and affordable for fabrication facilities that have no access to high-tech photolithography equipment. Samples as large as 76 mm (3”) in diameter may be exposed with a single lamp in one step and areas of 1 m2 and above may be processed with tiled arrays of lamps.\nPatterning of bulk polymers (acrylic sheets, for example) through a photomask and subsequent formation of sub-micron features has also been demonstrated.","PeriodicalId":306038,"journal":{"name":"UV and Higher Energy Photonics: From Materials to Applications 2019","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-ablation lithographic technique at 172 nm based upon flat excimer lamps (Conference Presentation)\",\"authors\":\"A. Mironov, D. Sievers, Jinhong Kim, Sung-Jin Park, J. Eden\",\"doi\":\"10.1117/12.2529538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photolithographic techniques capable of producing sub-micron scale features typically involve laser or electron beam sources and chemical development of an exposed photoresist. We report here a novel, low cost photolithographic process utilizing flat, efficient lamps emitting at 172 nm. Recently developed 10 cm x 10 cm lamps, for example, produce more than 25 W of average power at 172 nm which enables the precise and fast patterning of most polymers, including those normally employed as e-beam resists and photoresists. Recent experiments demonstrate that PMMA films less than 100 nm in thickness are patterned in less than 20 s through a contact mask with high contrast resolution of 500 nm features. The ultimate resolution limit is expected to be ≤ 300 nm for a contact method. Electroplating technique was further used to deposit 500 nm gold features on a silicon substrate. The reported process does not require a photoresist development step and is performed in nitrogen atmosphere at atmospheric pressure which make it fast and affordable for fabrication facilities that have no access to high-tech photolithography equipment. Samples as large as 76 mm (3”) in diameter may be exposed with a single lamp in one step and areas of 1 m2 and above may be processed with tiled arrays of lamps.\\nPatterning of bulk polymers (acrylic sheets, for example) through a photomask and subsequent formation of sub-micron features has also been demonstrated.\",\"PeriodicalId\":306038,\"journal\":{\"name\":\"UV and Higher Energy Photonics: From Materials to Applications 2019\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UV and Higher Energy Photonics: From Materials to Applications 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2529538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UV and Higher Energy Photonics: From Materials to Applications 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2529538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photo-ablation lithographic technique at 172 nm based upon flat excimer lamps (Conference Presentation)
Photolithographic techniques capable of producing sub-micron scale features typically involve laser or electron beam sources and chemical development of an exposed photoresist. We report here a novel, low cost photolithographic process utilizing flat, efficient lamps emitting at 172 nm. Recently developed 10 cm x 10 cm lamps, for example, produce more than 25 W of average power at 172 nm which enables the precise and fast patterning of most polymers, including those normally employed as e-beam resists and photoresists. Recent experiments demonstrate that PMMA films less than 100 nm in thickness are patterned in less than 20 s through a contact mask with high contrast resolution of 500 nm features. The ultimate resolution limit is expected to be ≤ 300 nm for a contact method. Electroplating technique was further used to deposit 500 nm gold features on a silicon substrate. The reported process does not require a photoresist development step and is performed in nitrogen atmosphere at atmospheric pressure which make it fast and affordable for fabrication facilities that have no access to high-tech photolithography equipment. Samples as large as 76 mm (3”) in diameter may be exposed with a single lamp in one step and areas of 1 m2 and above may be processed with tiled arrays of lamps.
Patterning of bulk polymers (acrylic sheets, for example) through a photomask and subsequent formation of sub-micron features has also been demonstrated.