谐波补偿系统中反向传播和离散Hopfield神经网络的可预测性

H.C. Lin, C. Lee
{"title":"谐波补偿系统中反向传播和离散Hopfield神经网络的可预测性","authors":"H.C. Lin, C. Lee","doi":"10.1109/ICPST.2000.900080","DOIUrl":null,"url":null,"abstract":"A quality tool for predicting control signals is indispensable for effective harmonic compensation in AC power distribution systems. Notably in the literature, either back propagation (BP) or Hopfield neural networks (HNN) has claimed to provide quality control signals to achieve the desired harmonic reduction results. This paper evaluates the predictability of BP and HNN in terms of convergence behaviour and learning capability, as applied to the reduction of load generated current harmonics in a variable speed DC drive. Using the same real current harmonic data, our test results confirm that BP has a larger dynamic harmonic range whereas discrete HNN, due to its interconnection structure, needs larger size of memory map.","PeriodicalId":330989,"journal":{"name":"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictability of back propagation and discrete Hopfield neural networks in harmonic compensation systems\",\"authors\":\"H.C. Lin, C. Lee\",\"doi\":\"10.1109/ICPST.2000.900080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quality tool for predicting control signals is indispensable for effective harmonic compensation in AC power distribution systems. Notably in the literature, either back propagation (BP) or Hopfield neural networks (HNN) has claimed to provide quality control signals to achieve the desired harmonic reduction results. This paper evaluates the predictability of BP and HNN in terms of convergence behaviour and learning capability, as applied to the reduction of load generated current harmonics in a variable speed DC drive. Using the same real current harmonic data, our test results confirm that BP has a larger dynamic harmonic range whereas discrete HNN, due to its interconnection structure, needs larger size of memory map.\",\"PeriodicalId\":330989,\"journal\":{\"name\":\"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPST.2000.900080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2000.900080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在交流配电系统中,有效的谐波补偿离不开控制信号预测的质量工具。值得注意的是,在文献中,无论是反向传播(BP)还是Hopfield神经网络(HNN)都声称可以提供质量控制信号来实现期望的谐波降低结果。本文评估了BP和HNN在收敛行为和学习能力方面的可预测性,并将其应用于减少变速直流驱动器中负载产生的电流谐波。使用相同的实际电流谐波数据,我们的测试结果证实BP具有更大的动态谐波范围,而离散HNN由于其互连结构,需要更大的存储映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictability of back propagation and discrete Hopfield neural networks in harmonic compensation systems
A quality tool for predicting control signals is indispensable for effective harmonic compensation in AC power distribution systems. Notably in the literature, either back propagation (BP) or Hopfield neural networks (HNN) has claimed to provide quality control signals to achieve the desired harmonic reduction results. This paper evaluates the predictability of BP and HNN in terms of convergence behaviour and learning capability, as applied to the reduction of load generated current harmonics in a variable speed DC drive. Using the same real current harmonic data, our test results confirm that BP has a larger dynamic harmonic range whereas discrete HNN, due to its interconnection structure, needs larger size of memory map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信