A. Rinaldi, A. Proietti, A. Tamburrano, G. De Bellis, M. Mulattieri, M. S. Sarto
{"title":"应变传感用多层石墨烯薄膜","authors":"A. Rinaldi, A. Proietti, A. Tamburrano, G. De Bellis, M. Mulattieri, M. S. Sarto","doi":"10.1109/NANO.2014.6967987","DOIUrl":null,"url":null,"abstract":"In this work we investigate the piezoresistive effect in multilayer graphene (MLG) based films produced by two different cost-effective techniques, spray coating and drop casting. Both techniques enable the direct deposition of the sensor over the structure to be monitored. The piezoresistive behavior of the MLG-based sensors has been investigated experimentally by measuring the variation of the electrical resistance during three point bending tests. The sensor response has been stabilized through an optimized mechanical treatment. The obtained results show that the produced sensors are characterized by a gauge factor in the range 20-50 at very small strains (i.e. below 0.2%).","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multilayer Graphene-based films for strain sensing\",\"authors\":\"A. Rinaldi, A. Proietti, A. Tamburrano, G. De Bellis, M. Mulattieri, M. S. Sarto\",\"doi\":\"10.1109/NANO.2014.6967987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate the piezoresistive effect in multilayer graphene (MLG) based films produced by two different cost-effective techniques, spray coating and drop casting. Both techniques enable the direct deposition of the sensor over the structure to be monitored. The piezoresistive behavior of the MLG-based sensors has been investigated experimentally by measuring the variation of the electrical resistance during three point bending tests. The sensor response has been stabilized through an optimized mechanical treatment. The obtained results show that the produced sensors are characterized by a gauge factor in the range 20-50 at very small strains (i.e. below 0.2%).\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6967987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6967987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilayer Graphene-based films for strain sensing
In this work we investigate the piezoresistive effect in multilayer graphene (MLG) based films produced by two different cost-effective techniques, spray coating and drop casting. Both techniques enable the direct deposition of the sensor over the structure to be monitored. The piezoresistive behavior of the MLG-based sensors has been investigated experimentally by measuring the variation of the electrical resistance during three point bending tests. The sensor response has been stabilized through an optimized mechanical treatment. The obtained results show that the produced sensors are characterized by a gauge factor in the range 20-50 at very small strains (i.e. below 0.2%).