半仿射代数的完备性判据

Á. Szendrei
{"title":"半仿射代数的完备性判据","authors":"Á. Szendrei","doi":"10.1109/ISMVL.1992.186812","DOIUrl":null,"url":null,"abstract":"A semi-affine algebra is considered complete if it is a simple affine algebra, and the question of under what conditions a semi-affine algebra is complete is investigated. It is determined that a finite algebra A that is semi-affine with respect to an elementary Abelian group is complete if and only if A admits no nontrival congruence of the group and no q-regular relation corresponding to a q-regular family of congruences of the group, and A is not isomorphic to a matrix power of a unary semi-affine algebra.<<ETX>>","PeriodicalId":127091,"journal":{"name":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A completeness criterion for semi-affine algebras\",\"authors\":\"Á. Szendrei\",\"doi\":\"10.1109/ISMVL.1992.186812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-affine algebra is considered complete if it is a simple affine algebra, and the question of under what conditions a semi-affine algebra is complete is investigated. It is determined that a finite algebra A that is semi-affine with respect to an elementary Abelian group is complete if and only if A admits no nontrival congruence of the group and no q-regular relation corresponding to a q-regular family of congruences of the group, and A is not isomorphic to a matrix power of a unary semi-affine algebra.<<ETX>>\",\"PeriodicalId\":127091,\"journal\":{\"name\":\"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1992.186812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1992.186812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果半仿射代数是一个简单的仿射代数,则认为它是完全的,并研究了在什么条件下半仿射代数是完全的问题。确定了关于初等阿贝尔群的半仿射有限代数a是完备的,当且仅当a不允许群的非平凡同余,不允许群的q正则族对应的q正则关系,且a不同构于一元半仿射代数的矩阵幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A completeness criterion for semi-affine algebras
A semi-affine algebra is considered complete if it is a simple affine algebra, and the question of under what conditions a semi-affine algebra is complete is investigated. It is determined that a finite algebra A that is semi-affine with respect to an elementary Abelian group is complete if and only if A admits no nontrival congruence of the group and no q-regular relation corresponding to a q-regular family of congruences of the group, and A is not isomorphic to a matrix power of a unary semi-affine algebra.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信